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I N T R O D U C T I O N  

Motivated by ambitious space programs, vibrations of large scale flexible space 

structures have been an active area of research among others. Such structures are 

usually comparatively ligh~ weight and as a consequence are likely to be flexible. Due 

to building of larger and more flexible structures, the analysis and design of flexible 

mechanical systems has steadily gained in importance. The approach has been to study 

a prototype model, such as, a long flexible rectangular panel attached to a movable rigid 

body (hub) at one end to represent a Solar Cell Array. In general moderate disturbance 

may result in moderate frequency vibration in the system due to its flexibility and the 

most important problem for these flexible structures is to suppress the vibrations to 

assure a good performance. 

Mechanical systems of the above prototype consisting of coupled elastic part and 

rigid part, constitute the class of hybrid systems. Such systems occur elsewhere also, 

such as in robots with flexible arms, spacecraft with flexible appendages or a flexible 

beam (mast) joining two rigid bodies one representing Space Shuttle Orbiter consid- 

ered fixed and the other representing the Antena Reflector. In fact, the hybrid systems 

encompass a rather extensive class and the investigation to control and stabilize their 

vibrationsmare frontier area of research for theoretical as well as experimental under- 

stanging, forming the substance of this Thesis. 

The discrete coordinate system can be a convenient practical approach to describe 

the dynamical-response analysis of a space structure. Due to representation of motion by 

a limited number of displacement coordinates, the formal action can only approximate 

the actual dynamical behavior. The precision of the result towards the actual behavior 

can of course be improved by increasing the number of degrees of freedom infinitely. 

In mathematical formalism, the dynamical consideration of a system of infinitely many 

connected points leads to differential equations in which the position coordinate acquires 

the role of an independent variable. In as much as the time is also an independent 

variable like the position coordinate, the formulation of the equations of motion in this 

way leads to partial differential equations with two independent variables (time t and 

space coordinate z). The system is thus commonly known as distributed parameter 
system. 

The vibrations of flexible space structures are thus problems of dynamcal system 
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theory governed by partial differential equations. These types of problems are very 

significant from mathematical point of view also. Mechanical engineers are primarily 

interested in structural analysis that means, determination of stress and displacement 

distributions under prescribed loads and constraints; free and forced vibrations that 

means, computation of nodes and natural frequencies; problem of parametric excitation 

and elastic stability (buckling of columns and plates) and optimal structural design of 

elastic system (cf. Clough and Penzien [17], Meirovitch [60], Timoshenko and Gere [84]). 

On the other hand, ,some possible objectives of control engineers are the determination 

of distributed or boundary value control variable (loads, frequency, bending moments 

etc.) to obtain a desired dynamic behavior of the elastic system under consideration and 

application of Lyapunov's stability theory (cf. LaSalle and Lefschetz [45]) for solving 

kinematic stability problem (Timoshenko et al. [85], Ray and Lainiotis [75]). 

A very common approach to treat the vibration problem in engineering literature, 

is to decompose the vibration into normal modes and retain the first few modes to 

reduce the problem to finite dimensional state-space representation governed by ordinary 

differential equations (cf. Fukuda et al. [22,23,24], Bontsema et al. [3], Matsuno et 

al. [59], Sakawa and Luo [79]). This approach is termed 'modal' analysis. However, 

considering the dynamic response for this reduced finite set of equations does not always 

guarantee that the same response will work on the original set of equations. In fact, 

since the actual number of modes of an elastic system is infinite, the number of modes 

that should be retained is not known a priori. 

Research in the area of exact controllability and boundary stabilization problems for 

distributed parameter systems have been developing in a significant manner. The most 

common classes of vibration control mechanisms are of passive, active and of hybrid 

type. Passive vibration control uses resistance devices that absorb vibration energy. 

Active vibration control is also like that, but involves the use of force actuators linked 

with external energy. Hybrid vibration control is a combination of passive approach 

with active control. The objective is to bring the vibrations to null in some finite time 

T. From mathematical point of view, exact controllability at time T > 0 of a system 

states the capability~ using a suitable control function defined in [0, T], to steer the 

system from an arbitrary initial state say, (Uo,Vo) in some Hilbert space H to an 

equally arbitrary desired final state say, (UT,VT) in H at the time T. In particular, 

when the final state (UT,•T) : (0,0), the corresponding property is termed as null 

controllability and when the initial state (Uo,V0) = (0, 0), the corresponding problem 

is called reachability. Approximate controllability is usually stated in the context of 

approximate teachability, the ability to drive the system from some initial state (Uo, Vo) 



Introduction 3 

to the set of final state (UT,VT) dense in the space H. The associated type of stability 

most commonly studied in the mathematical literature are strong stability and uniform 

stability. A system is called strongly stable, if the energy E(t) of each solution of the 

system converges to zero as time t --, +o~. If the convergence is uniform for t > 0 

with respect to all initial data in the energy space for which E(0) < oo, the system is 

called uniformly stable. If the stability property can be achieved due to incorporation 

of a stabilizer or a damping device applied on the boundary, the system is then called 

boundary stabilizable. 

Research on problems of controllability and stability for distributed parameter sys- 

tems has started in an extensive way dating back to the seventies (cf. Russell [77,78], 

Graham and Russell [31], Lagnese [40,41], Chen [6,7,8]) and the idea was first applied to 

the flexible system governed by wave equation. The theory of exact controllability for 

second order hyperbolic equation with standard boundary conditions has been studied 

by several authors (cf. Chen [6], Lions [52], Ho [32], Zuazua [89]), and they have com- 

mented on performance limitations. To study exact controllability, a systematic method 

named, HUM for 'Hilbert Uniqueness Method', based on uniquess results and on Hilbert 

spaces constructed by using uniqueness, avoiding normal modes altogether has been in- 

troduced by Lions [52], for distributed systems governed by second order wave equation 

and fourth order Petrowski equation with Dirichlet and Neumann boundary conditions. 

In contrast, Chen [6] has achieved the exact controllability result for wave equation in a 

bounded domain by stability method. Ho [32] established it by means of a minimization 

problem corresponding with its adjoint system and has shown the observability of the 

adjoint system by multiplier technique. He considered one dimensional wave equation 

with variable wave speed and locally distributed control as a model and later in the 

paper [33], he obtained a case of approximate controllability of the system by treating 

a problem of coupled strings with control applied at the coupled points. Zuazua [89] 

studied the semilinear wave equation in the bounded domain with both Dirichlet and 

Neumann boundary conditions to obtain the exact controllability result by HUM while, 

by dynamic programming arguments, a strongly damped wave equation with Dirichlet 
boundary condition was treated by Bucci [5]. 

There has been extensive work in the.last decade on boundary stabilization of wave 

equation (cf. Chen [8,9], Lagnese [42,43], Lasiecka and Triggiani [46], Komornik [37], 

Komoruik and Zuazua [38]). In summary, the pioneering work was first started since 

early sixties in a study aimed at achieving energy decay rates for the wave equation 

exterior to a bounded obstacle (the so called exterior problems) (cf. Morawetz [63], Lax 

et al. [50]), and investigations had been continuing till the mid-seventies (cf. Morawetz 



Introduction 4 

et al. [64], Qulnn and Russell [70], Strass [83]). These efforts brought forward several 

energy identities, which were then used to obtain energy decay rates under suitable 

geometrical conditions on the boundary of the obstacle. On the other hand, the study 

of the analogous problem in boundary domains with an 'energy absorbing' boundary 

began in the seventies (cf. Russell [77], Rauch and Taylor [74], Slemord [82]). The latter 

kind of problem is more difficult than the exterior problem, since the latter enjoys the 

advantage that the energy distributes itself over an infinite region as time t --- oo. 

To investigate the latter kind of problem, Chen [6] first obtained the energy decay 

rates (uniform stabilization) for the interior problem, under some natural geometrical 

conditions on the domain, by adapting the multiplier technique developed earlier for the 

exterior problem. His later paper [7] relaxed the geometrical conditions on the domain 

by employing this time a new energy functional discovered by Strass [83] in the study 

of exterior problem. Later considering some energy functional, Lagnese [42] managed 

to relax even further the geometrical conditions on the domain under which an energy 

decay rate is obtained. Using one dimensional wave equation with distributed viscous 

damping as a model, Chen et al. [10] has shown an asymptotic average decay rate of 

eigen modes equal to the damping rate of the high frequencies of the wave. The result 

of uniform exponential energy decay estimates for the solution of wave equation in a 

bounded domain has been obtained directly by Lagnese [43], Komornik and Zuazua 

[38] by suitable viscous boundary feedback and subsequently using a special kind of 

feedback, Komornik [37] obtained faster energy decay rates. 

Chen et al. [12] treated the problems of two coupled vibrating strings with a 

stabilizer or damping device installed at the coupling point to achieve uniform as well as 

non-uniform exponential decay property of vibration energy, subject to some restrictions 

on the arrangement of the stabilizer and the wave velocities of the strings. For coupled 

vibrating strings, the difficulty stemmed from different wave speeds in each of them. 

With a stabilizer installed at the coupling point, this was successfully tackled by Liu 

in [56], using frequency domain methods and in his later paper [57], the idea has been 

extended to a long chain of coupled vibrating strings, where a stabilizer is installed at 

each internal node and also at the boundary. It is proven that the energy of the system 

decays uniformly exponentially if there is a stabilizer installed at the boundary point. If 

the stabilizers are installed only at internal nodes, the energy may decay either uniform 

exponentially or non-uniformly, or may not be decay at all, depending on the different 

wave speeds and the stabilizer arrangement. The idea was then applied by Kim [35] 

to a composite bar consisting of two different segments, only one of which is damped. 

The case of serially connected strings has been treated in Lee and You [51]. Chen et al. 
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[11] have presented a general theorem on an abstract evolution equation with partially 

distributed damping in which the conditions for exponential decay of energy involve 

eigen values and eigen functions of the associated stationary system. 

Subsequently, the idea of controllability and stability for the flexible elastic struc- 

tures was extended to systems governed by Euler-Bernoulli beam equation (cf. Chen 

et al. [13], Lasieclm and Triggiani [47,48], Krall [39], Morgfil [66,67]). In particular, in 

Chen et al. [13], it has been proven that, in a cantilever beam, a single non-dynamic 

actuator applied at the free end of the beam is sufficient to uniformly stabilize the beam 

vibrations. Two boundary controls are taken into account to study exact controllability 

for Euler-Bernoulli beam problem in a bounded subspace in the work of Lasiecka and 

Triggiani [47], one for Dirichlet and other for Neumann boundary control, and in their 

[48], one for displacement and other for moment boundary control. On the other hand, 

using the basic principal of HUM, Kim [36] has established the exact semi-internal con- 

trollability of an Euler-Bernoulli beam with variable coefficients. The uniform stability 

of the vibrations of a flexible structure, described by one dimensional Euler-Bernoulli 

beam, clamped at one end has been treated by Krall [39], with boundary controls at 

the other end and later the same has been treated by Morgiil [66], with dynamic bound- 

ary control at that end. The result is then extended for rotating flexible structure in 

Morgfil [67], using energy functional technique. A good source of reference for boundary 
stabilization of various plate models is the work of Lagnese [44]. 

Controllability and Stability of the vibrations of elastic systems, particularly flexible 

structures have been studied in the past. The appearence of hybrid vibrating systems 

is rather common. A rigorous dynamic model of flexible space craft, in the form of a 

hybrid system was first introduced by Meirovitch [61,62]. To obtain stabilization of the 

system Lyapunov's approach was used. Similar problems were later treated by Biswas 

and Ahmed [2] and some simple feedbacks were suggested for stabilization. The exact 

controllability and boundary stabilization of a hybrid system of elastic vibrations of an 

elastic beam linked at its boundary to a rigid mass was demonstrated in Littman and 

Markus [54,55]. These papers are devoted to the control design and stabilization of 

SCOLE (Spacecraft Control Laboratory Experiment) model--one specific elastic struc- 

ture that forms a basic type of component in many more complicated and extensive 

space-environment constructions. In one specific case, Littman and Markus [55], prove 

the strong stabilization together with the lack of uniform stabilization for the hybrid 

model of vibrations. This type of hybrid control of an elastic structure was generli~.ed to 

two dimensional rectangular elastic plate by You [87,88], with inertial properties along 

the control edge, which is rimmed with a flange of lip. The idea is extended by Markus 



Introduction 6 

and You [58} to the problem of elastic plates with suitable boundary conditions at the 

three clamped sides and dynamical boundary control from the free side to obtain an ap- 

proximate control system. Recently, using a method of compact perturbation, R.ao [73] 

has generalized the result of Littman and Markus [55], in the case the hybrid clamped 

beam with an end mass, and with usual boundary feedback applied to the end with 

the mass. All their investigations have shown the controllability or stability of Euier- 

Bernoulli beam or wave equation, clamped at one end and free at the other, except for 

feedback damping or control force. 

For hybrid system, which is our main concern in this Thesis, it is important from 

practical point of design as well as theoretical challenge, that most interest lie in the 

boundary control, pointwise control or even pointwise boundary control. Most of the 

work in this area has dealt with the problems of boundary control applied at free end 

and clamped on the other end. Actually for this class of system, the most common 

practical problem generaUy occurs when it is very difficult or undesirable to apply the 

boundary control at the free end of the elastic part where as to apply it on the rigid 

part is easier to obtain a good performance of the overall system. This type of hybrid 

problems are very significant from mathematical point of view. 

In this Thesis, the exact controllability and boundary stabilization of hybrid elastic 

structure composed of a rectangular flexible panel and with a rigid hub at one end, 

totally free at the other end will be analyzed and investigated systematically by a control 

force or torque applicable on the rigid hub only. Among the various types of vibrations of 

elastic systems, the main types of vibration viz., the rotational or torsional vibrations 

and transverse or flexural vibrations of beams or plates are considered separately to 

study the exact controllability and boundary stabilization of the system. Basically, 

these two types of vibrations under consideration are mathematically represented by 

the linearized equations 

2a2  (0.1) &= = c  

a2y a4y 
m~-~- + E l ~ z  4 = 0 (0.2) 

respectively. In the torsional vibration equation (0.1), known as the wave equation, ~b 

denotes the rotational deflection at any point (z, t) and the parameter c the torsional 

wave velocity, depending on the torsional rigidity of the material and the radius of 

gyration about the the neutral axis of the structure. In the flexural vibration equation 

(0.2), known as the Euler-Berno,lll beam equation, I/ denotes the transverse deflection 

at any point (z, t)  and the parameters m, E l  respectively the mass per unit length 

and flexural rigidity of the structure. 
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We know that all structural vibration are attenuated, more or less quickly by inter- 

nal dissipative mechanism, unless some external forces provide continued excitation. In 

endeavour we intend to incorporate certain simple models incorporating internal dissi- 

pation or material damping. Our criteria for admitting internal damping term includes 

correspondence with physical reality as evident by experiment and well-posedness from 

mathematical point of view. In part to account this progressively, we consider the damp- 

ing mechanism commonly referred to as the Kelvin-Voigt damping (dashpot in series 

with a spring), after prominant English and German physicists of last century. For this 

type of damping it is supposed that the dissipative forms are obtained from the velocity 

in essentially the same way as restoring forces are obtained from displacement. In the 

case of the torsional and flexural vibrations the approximate equations (0.1) and (0.2) 

respectively become 
02r 2 02r 03r 
Ot 2 = c ~ + # - ~ - ~ t  (0.3) 

and 
02Y / 04Y 05Y "X 

m - ~ + E I ( - ~ x 4 + # - ~ i )  = 0  (0.4) 

where # > 0 is the internal damping parameter. In the literature (cf. Christensen [16]) 

more complicated models of internal damping have been proposed, but the Kelvin-Voigt 

model has been chosen to make the treatment as simple as possible. 

For the sake of simplicity and easy readability, we deride the whole work of the 

Thesis into two parts. In Part I, we have demonstrated the exact controllability of 

torsional vibration as weU as flexural vibration of a hybrid system consisting of an 

elastic rectangular panel with a rigid movable hub at one end and totally free at the 

other (such as solar cell array). An active control force or torque is applied on the rigid 

hub of the panel to suppress the vibrations exactly, when motion is set from given initial 

displacement and velocity along the length of the panel. We have studied the exact 

controllability after making the problems more realistic by incorporating small internal 

material damping of the structure as alluded above. In Part II, we have presented 

uniform boundary stability results of these problems by means of exponential energy 
decay estimates of the form 

E(t) < Me-a'E(O), t >_ 0 (0.5) 

for some reals M > 1 and ~ > O, by employing a viscous damping at the hub 

end only. In this part, we have also worked on the mathematical problem of uniform 

stability for the solution of internally damped wave equation 
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and with a more complicated standard linear model of viscoelasticity for internal damp- 

ing, 

Y" + ~U" = c~(AY + ~Au') (0.7) 

in a bounded domain fl in R" with piecewise smooth boundary I' (0 < A < #) 

to obtain the result (0.5) in explicit form, where prime denotes the differentiation with 

respect to time and A, the Laplacian in R" taken in the space variables. 

The outline of this Thesis, divided into two parts, is as follows: 

Part I, comprises the exact controllability problems and consists of five Chapters, 

namely, Chapters I to Chapter 5; while Part I I  comprises uniform stability problems 

and consists of six Chapters namely, Chapter 6 to Chapter 11. In fact, Chapter 6 to 

Chapter 9 involve the boundary stability problems relating to Chapters 1 to Chapter 4 

and Chapter 10 to Chapter 11 involve two mathematical uniform stability problems of 

generalized viscoelastic damping. 

In Chapter 1, we have made  a detailed discussion of the exact controllability of 

torsional vibrations of a rectangular panel hoisted by a rigid hub at one end. We first 

formulate the physical problem into mathematical analogy. Due to installation of the 

hub at one end of the panel, its dynamics leads to a nonstandard boundary condition 

and as a whole the system becomes a hybrid system of dynamics. It is shown that the 

whole system is exactly controllable for a time T > 2l/c, where I is the length of the 

panel and c the torsional wave velocity, by means of an active control torque applied 

on the rigid hub only. The technique used to establish the exact controllability result is 

the Hilbert Uniqueness Method. The mathematical development is given in detail, so 

that the techniques are easily comprehensible in the subsequent chapters. 

In Chapter 2, we have incorporated small internal damping of the material to the 

governing equation of the problem discussed in Chapter 1, to achieve a more realis- 

tic model from practical point of view. The internal damping is modeled according 

to Kelvin-Voigt viscoelasticity. In this case also we have established the exact con- 

trollability result using HUM, by means of a suitable boundary control torque applied 

on the rigid hub only. An estimated minimum time for exact controllability for the 

corresponding system has also been obtained theoretically. 

In Chapter 3, we have made a detailed discussion of the exact controllability of 

flexural vibrations of the hybrid structure consisting of a rectangular flexible panel 

with a rigid hub at one end. After presenting the mathematical formulation of the 

problem, using HUM the exact controllability result a s  well as the minimum time of 

exact controllability, is achieved by means of an active boundary control force applied 
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on the rigid hub. 

In Chapter 4, we have included small internal damping of the material based on 

Kelvin-Voigt model, to the problem considerd in Chapter 3, so that from physical point 

of view the problem becomes more realistic. It is shown that vibration of the overall 

system can be driven to rest by means of a suitable boundary control force applied 

on the rigid hub only. Also an estimate of the minimum time of control is obtained 

theoretically by HUM. 

In Chapter 5, we have constructed a closed form appproximate numerical scheme 

for the problem discussed in Chapter 3, by Galerkin's residual technique to support 

and implement the method from practical point of view. An approximate closed form 

solution together with approximate boundary control are elicitted from the scheme. 

In Chapter 6, we have made a detailed discussion on boundary stabilization for 

the torsional vibrations of the hybrid system presented in Chapter 1. The uniform 

exponential decay of energy of the form (0.5) is obtained directly for the solution of 

such formulation for torsional vibrations of the panel with viscous boundary damping 
at the hub end only. 

In Chapter 7, we have presented the boundary stability result for internally damped 

torsional vibration problem described in Chapter 2. We have achieved explicitly the uni- 

form exponential energy decay estimate for the corresponding solution of the problem, 

by considering only a viscous boundary damping at the hub end. 

In Chapter 8, we have discussed the uniform boundary stability for the flexural 

vibrations of the hybrid system described in Chapter 3. An explicit form of uniform 

exponential energy decay rate is established for the solution of such problem for small 

vibrations of the panel with a viscous boundary damping at the hub end. 

In Chapter 9, we have made an illustrafll~ion on boundary stabilization for the 

internally damped flexural vibrations problem described in Chapter 4. The uniform 

decay of solution by means of exponential energy decay estimate is substantiated directly 

for such formulation by employing a viscous boundary at the hub end only. 

In Chapter 10, we have made a detailed demonstration on internally damped wave 

equation (0.6) in a bounded domain fl in 1~. n with piecewise smooth boundary I" 

under mixed undamped boundary conditions. We have briefly expressed the surrounding 

literatures and objective of presentation. An uniform exponential energy decay rate of 

the form (0.5) is explicitly established for the solution of this type of boundary value 
problem. 
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In Chapter 11, we have manifested the boundary stability of internally damped 

wave equation of the form (0.7) in a bounded domain 1"/ in Pd ~ as a more realistic 

form by the treatment of the model equation as 'standard linear model' of viscoelasticity. 

We have briefly discussed the physical motivation behind it. The uniform exponential 

energy decay rate of the form (0.5) is explicitly obtained subject to mixed boundary 

conditions. 

Finally, in Chapter 12, we have presented the concluding discussion where we have 

summarized the objectives and achievements of this work. We have also deliberated 

upon the strength of the work, and briefly focussed the scope of further work. 
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C H A P T E R  1 

E X A C T  C O N T R O L L A B I L I T Y  OF T O R S I O N A L  

V I B R A T I O N S  OF A F L E X I B L E  P A N E L  

1.1 I n t r o d u c t i o n  

Mathematical control theory of distributed parameter systems is currently under 

extensive study, in view of application of vibration control of various structural elements. 

The torsional vibrations of elastic space structures are the problems of dynamical system 

governed by partial differential equations. The problems of controllability and stability 

of second order hyperbolic equation with standard boundary conditions has been studied 

theoretically by a number of authors (cf. Chen [6,7,8], Lions [52], Morgiil [65]) and have 

been commented on the performances. To study exact controllability, a systematic 

method named HUM (Hilbert Uniqueness Method), has been introduced by Lions [52] 

for distributed parameter systems, governed by the second order wave equation and the 

fourth order Petrowsky equation with Dirichlet and Neumann boundary conditions. In 

contrast, taking into account only the first few modes of vibrations, after decomposition 

into normal modes, to reduce the vibration problem into finite dimensional state-space 

form, is a very common approach for treatment in engineering literature (cf. Fukuda et 

al. [22,23,24]). 

In this Chapter, we formulate a distributed hybrid dynamical model of torsional 

vibrations of a large flexible space structure such as, solar cell array and examine the 

exact controllability of the dynamics of the system. This type of model usually consist of 

coupled elastic and rigid parts, constituting a hybrid system. Due to complexity of the 

dynamics and need to control with high-quality performance of the whole system, it is 

necessary to apply suitable control force or torque on the system. Earlier, Littman and 

Markus [54,55] and later Rao [72,73] treated this type of problem and have shown the 

ability to control or stabilize vibrat|ons modeled by wave equation or Euler-Bernoulli 

beam equation, damped at one end and control force or feedback damping applied on 

the other end. But application of control force or feedback damping on that end of the 

elastic part is very difficult or undesirable in practice. 

As a simple model, here we consider the problem of torsional vibrations of an elastic 
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rectangular panel hoisted by a movable rigid hub at one end and totally free at the other 

end. The dynamics of vibrations is governed by one dimensional wave equation. Instal- 

lation of the hub at one end of the panel leads to a nonstandard boundary condition and 

as a whole the system becomes a hybrid model. An active control force is applied only 

on the rigid hub to suppress the vibrations of the system exactly following prescribed 

initial motion, without applying any constraint at the free end. The investigation has 

also put forward an estimated least time of exact controllability in the framework of 

HUM. 

1 .2  M a t h e m a t i c a l  F o r m u l a t i o n  

The physical model to be considered here is a simple type of structure consisting 

of a uniform rectangular flexible panel of unit width and length l held at one end by 

a rigid hub of mass mh and totally free at the other end. The hub end considered 

as lumped mass is capable of motion under the action of control. Our objective is to 

control the vibrations of this system exactly (t ~ the case of null  controllability), by 

application of a suitable active control torque Q(t) to the rigid hub, in some finite 

time interval [0,T ] when it is initially set in motion. 

Q(t) F 

1 

PANEL 
C X  

Figure  1.1. Schematic of the rigid hub and the panel t'or torsional vibrations. 

Referring to the schematic Figure 1.1, if ~h(t) is the rotation of the rigid hub and 

~bp(z,~) that of the panel at the position z along the span of panel relative to the hub 
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at time t, then the total  rotational angle 

r 1 6 2 1 6 2  O < x < _ l ,  0 < t < T ,  (1.1) 

of the panel satisfies torsional vibrations equation 

r  = c2r  0 < x < l, 0 < t < T, (1.2) 

under the assumption tha t  rate of change of r along the length of the panel i.e., 

fr  is very small, where dots and primes denote differentiation with respect to 

time coordinate t and space coordinate z respectively, and c2= Dp/pvJ v. The 

constants Dr, Pv, Jv are respectively the torsional rigidity, the density and the radius 

of gyration about the central axis of the panel. 

Initially at time t = 0, the panel is set to vibrations with initial values 

r  = Co(Z) and r  = r 0 < x < I. (1.3) 

At the hub end x = 0 where the control torque Q(t) is applied, the equation of 

motion is 

Ih'r = npr  t) - Q(t) (1.4) 

where Ih is the total moment of inertia of the hub about its axis of rotation. Since at 

x = 0 we have Cp(0, t) = 0, yielding Ch(t) = r t). Also from equation (1.1), we 

have r  = r  Equation (1.4) then becomes 

r t) = a r (0 , t )  + AQ(t), 0 < t < T, (1.5) 

where a = Ih/Dp and A = 1/Dp. The free end x = I of the panel yields the condition 

r = 0, 0 < t < T. (1.6) 

Therefore, the mathematical  problem to be concerned for controllability of the torsional 

vibrations of the uniform rectangular panel as described above, is governed by the hybrid 

system: 

"d (= , t )  = 

r  = r 

r  = a "r C0,t) + 

r  0) = 

r =0, 

0 < x < l ,  0 < t < T ,  

O < z < l ,  

0 < t < T .  

(1.7) 

To study the exact controllability of~he mathematical  problem (1.7) at some finite 

time T > 0, our aim is to find a control torque Q(t) appropriately, such that  Q(t) 
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drives the system (1.7) to rest (the desired final state) at time t = T. Then the solution 

of (1.7) must satisfy 

r  = r  (1.8) 

To establish (1.8) for the system (1.7) by HUM, some auxiliary results are needed 

which are in the following. 

1.3 Adjoint System. 

Associated with each solution of the system (1.7), we start with 

solution of its adjoint system: 

(~,t) = d o"C~,t), 

8'(O,t)  = a 8 (O,t) ,  O'(1,f) = O, 0 < t < T,  

8(z,t), the 

0 < z < l ,  0 < t < T ,  

(1.9) 

under the assumption 8o(0) = 0, Oi(0) = 0. Now, for every {0o, Ol} C F = L2[0,/] • 

H-t[0, l], where H' : [0,  l] is the dual space of the Sobolev space HI[0, l] of order one 

given by 
O.f L2[0,I]} ' H:[O,t] = { f  I f e L~[0,t], ~ 

the system (1.9) has a unique solution 0(z,t) (cs Lions and Magenes [53]) for 0 

z < l ,  0 < t < T .  

To each solution of (1.9), the total energy at time t is defined by 

~(t) = ~ ['(0' + c'o")dz + ~ 0 ' ( o , 0 .  (1.1o) 
z J O  

Differentiating (1.10) with respect to t and using the first equation of (1.9), we have 

= fotC'(#8 " + 8'O')dz + F,(t) C20t0(0, t)0(0~ t). 

Integrating by parts we have, 

E(t) = c, [o0,]' ~ + C2~0(0~ ~)0(0, t). 

Applying the boundary conditions of (1.9), the above finally yields 

E(t) =0, (I.11) 

which implies that 

E(t) = constant = E(0), for 0 < t < T, (1.12) 
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where, 

since 81(0) = 0, and thus the adjoint system is energy conserving system. 

(1.13) 

1.4 Backward Sys tem and Operator A 

We next consider r t), the solution of a time backward system: 

(~, t )  = c=r 

r  = 0, r  = 0, 

r  = ~ ~ (0,t)  + Zo~0(0,t), 

O < z < l ,  O < t < T ,  

O < z < l ,  

r  = 0, 0 < t < T  

(1.14) 

given by 

According to Lions [52], we shall now estimate the functional 

{00,01} --~ <A{Oo, 01} , {0o, 01}> 

<A{0o,01},{0o,01}) = fo'(0or Olr 

For this, multiplying the first equation of (1.9) by r and that of (1.14) by 

integrating over [0, l] • [0, T] after subtraction, we obtain 

/o7o ~ ~or  - o ~  = ~ ~or' ~or~ ~o,~ o ~ , ~  

(1.17) 

8, and 

Integrating by parts and applyin~ the boundary and initial conditions of the systems 

(1.9) and (1.14), the above yields 

]o'(~o~,- 0~,o)d~ - e ~ o  ]o ~ o'(o, 0~ , -  o'o ]o ~ [~(o, 0,(o, 0 -  ~(o,,)0(o, 0l ~, 

r =~b(z,0) and r = r (1.16) 

(1.15) 

where 

A{0o,01} = {r162 

where /~o is a constant independent of t. It is clear that the solution of the non- 

homogeneous boundary value problem (1.14) depends on 0(0, t), i.e., depends on the 

solution of the system (1.9), and hence on the initial values 0o and 01 of (1.9). Now 

for given {0o, 0x} in the Hilbert space F, the system (1.!4) has a solution r t) (cf. 

Lions and Magenes [53]). After knowing r the functions r and r 
can be obtained easily. We can therefore uniquely define an opertor A as 
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Again integrating by parts, the second integral after simple calculations eventually re- 

duces to zero, as 00(0) = 0, 01(0) = 0. Thus from above, we finally have 

l T 
f0 (0o01 - O, gb0)dz = c2X~o fo O2(O't)dt" (1.18) 

By (1.17) and (1.18), the functional is thus estimated as 

<A{~o,~1},{~0,~1}> --~ ~o/(0or 01r :C/oTO2(O,t)dt, (1.19) 

where, C = c2Af~o~ For T large enough say, T > To, (To is estimated in the next 

section), we shall show that the functional defined by (1.19) defines a norm on the initial 

values {0o, 01}, equivalent to the norm on the space F, i.e., 

I(0o.0  lrF : ( . 0 )  

1.5 Es t imate  of  the  Least Contro l  T i m e  To 

To estimate the least time to control the system (1.7) by HUM, we need to establish 

here the following two inequalities, which will be later used for observability of the 

adjoint system and hence to establish the controllability of the original problem (Dolecki 
and Russell [19]). 

There exist positive constants Co, C1 and a number To such that 

Co(T- To)[llOoll~,=[o,~ + [18,ll~-,[o,,]] _< cfoTo=(O,t)dt 

<_ C,T[llOolli=to,,l + [[01[[~/-l[o,l]]. (1.21) 

Before establishing the actual inequalities in (1.21), we shall first present the fol- 

lowing two inequalities. 

and 

1 T 1 
fo 02(O't)dt > To)E(0) 

- c~a -_4_ Kl (T - 

(1.22) 

T 
2/o  '(o,t)dt _<  s(o) 

where K is some positive constant. 

To establish the inequality (1.22) by multiplier technique, we multiply the first 

equation of (1.9)by z0' and integrate over [0, l] x [0, T] and obtain 

' 1 ' rz~__~O~dtd z = c ~ f~['Tz_~zO,adtdz. 
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Integrating by parts and applying the boundary conditions of (1.9), we have after a 

straight forward calculations 

t l r ~ 1 t 
fo O (l,t)dt + fo fo T(O' +c'O")dtdx : O. (1.24) 

Now if we set 

then we note that 

Now applying the inequality 

for any real 

X = zO'Odz 

,x,< 
=e[o,q 

,ab[ <_ l ( ea' + l b ') 

e > O, we have from (1.26), 

(1.25) 

(1.26) 

l l - C2ao 2 _ !E(t) IXI___ ~ ]o'(0' + c=O'=)dz--c[E(t) ~ (0, t)] < 

by the energy relation (1.10). Hence, 

Ixl: E(0)): (1.27) 

by the relation (1.12). 

Introducing (1.10) and (1.27) in (1.24), we have therefore 

(1.28) 

Let us take a positive constant 

f~ O2(l't)dt (1.29) 
K = f~ T O~(O,t)dt 

then it follows from (1.28) that 

l (Kl + c~a) Jo T 02(O,t)dt > (T - To)E(O) (1.30) 

where, 
2/ 

To = - - .  (1.31) 
C 

We should note that the constant K in (1.29), gives the ratio of the total kinetic 

energy at the free end and that of the hub end of the panel in the time interval [0,T]. 
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since the adjoint system is energy conserving system, therefore we can conclude that 

K is finite. 

Next we consider the energy equation (1.10). Integrating (1.10) over [0,T], we 

obtain 

T C2.__.~_~ 02(O,t)dt. 1 T I C2afO ~2(O,t)dt > fo T fjo TE(t)dt 2 - 2 = /o 
Use of (1.12), it ,follows that from the above 

C2~ 
fo T 02(O,t)dt < TE(O). (1.32) 

2 

The relations (1.30) and (1.32) thus lead to the inequalities (1.22) and (1.23). 

Now by Poincare inequality (of. Aubin [1]), we know that the norm (f~ f'2dx)�89 is 

equivalent to the norm of f on the space Hi[0,/], provided f(x0) = 0 for 0 <_ x0 -< I. 

Therefore there are suitable constants Co and 

written as 

C1 such that (1.22) and (1.23) can be 

Co(T - To)[lleoll~.,to,~] + Ilelll~,to.~l] <_ c ~ a~(o,t)dt 
2 __ C1T[llOoll~,to,,l + II0111L, to,tl]. (1.33) 

It should be noted that the inequality of the form in (1.33) is obtained by multi- 
, . , , .  C~~ c ~ )  ) , . . 

puer tecnmque/~wmcn is not unique. The same form can also be obtained by different 

multiplier such as in the Chapter 3 and Chapter 4. 

To establish the actual inequalities in (1.21) we define a premitive function X(X, t) 

by the indefinite integral /' x(x,t) = O(x,t)dt (1.34) 
so that 

Then X(Z,t) satisfies 

~(~,t)=oC~,t). 

~(z,t)-c~x"C~,,t) = ~(x, t ) -~ ~/'O"(~:,t)dt 

= O(~:,t)-/' ~ (~,t)dt 

O. 

Thus X(Z, t) satisfies the system of equations: 
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0 < z < l ,  0 < t < T ,  

O < z < l ,  

O < z < l ,  

0 

X(z ,O)  = O(x, t)dt  = Xo (say), 

:~(~,0) = O(z,O) = Oo = Xz (say), (1.35) 

f f x ' (O, t )  = O'(O,t)dt = a O(O,t)dt = aX(O, t )dt ,  0 < t < T, 

/ x ' ( l , t )  = O'(t,t)dt = O, 0 < t < T, 

We observe that the system (1.35) is analogous to the system (1.9). Hence we can use 

the inequalities in (1.33) for X(Z,t) to obtain 

2 2 .~0 T Co(T- T0)[IIx011H,[O,Z] + IlxllI .2[0, ]] < c ~:(O,t)dt 

2 tlxlll 2Io,,l]. (1.36) < ClT[IlxolI ,Io,,I + 

Since :~(x,t) = 0(~:, t), the inequalities in (1.21) are followed from (1.36). 

1 . 6  E x a c t  C o n t r o l l a b i l i t y  R e s u l t  

In the literature, meaning of the exact controllabilty of a system is to find a suitable 

control function which drives whole system to a desired final state at some finite T > 0. 

Therefore to establish the exact controllability, for the solution of the system (1.7), we 

need an appropriate control torque Q(t)  defind on [0, T] such that the solution of 

system (1.7) satisfies (1.8) and it follows from the ensuing theorem. 

Theo rem 1.1. Let T > To, then for every r E Hi[0,/] and r c L2[0,I], there 

is a control function Q(t) E L~[0,T] proportional to 0(0, t) such that r the 

solution of the system (1.7) satisfies (1.8). 

Proof.  For T > To, it follows from the inequalities in (1.21) that (1.19) defines 

a norm of {00, 01}. This norm is equivalent to the norm on the Hilbert space F = 

L2[0, I] x H-z[0, I], being the completion of smooth functions {00, 0z}. Again by virtue 

of (1.15), (1.19) and the left inequality in (1.21), we can use Lax-Milgram theorem (cf. 

Aubin [1]), to conclude that A is an isomorphism operator from F to F '  for T :~ To, 

where F '  is the dual space of F. Therefore we can uniquely invert the operator A 

from F '  to F. Hence, forgiven {Oo,~}e  F' ,  there exists (00,01} e F such that 

{Oo, OA = -r (1.37) 
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or equivalently 

A{00,01) ={r --r 

Finally, if we take the control Q(t) proportional to O(O,t) say, Q(t) = BoO(O,t) 
for the original problem (1.7), where O(x,t) is the solution of (1.9) with {0o,01} as 

solution of (1.37), then from (1.15) we have that the function r t), the solution of 

the system (1.14), satisfies r = r and r = r By the uniqueness of the solution, 

we conclude that 

= 0 < x < l ,  0 < t < T .  (1.38) 

The result (1.8) for exact controllability of the system (1.7) then immediately follows 

from the backward system (1.14). This completes the proof. 

1.7 Concluding Remarks 

From the inequality (1.21), it follows that the adjoint system is observable for 

T > To, where To = 21/c as given by (1.31). Therefore as in the literature [19], 

the the original system is controllable for T > To. The time To can therefore be 

considered as the the estimated least time (may be thought as critical time) for exact 

controllability of the torsional vibration problem governed by the system (1.7). Since 

c is the torsional wave velocity and l the length of the panel, the least time namely, 

21/c can immediately be identified to the time taken by the torsional wave to originate 

and return to the control end (hub end) via the free end. Finally we remark that, as 

the action of the control torque Q(t) in the system (1.7) depends on the solution of 

the adjoint system (1.9), the suppression of vibration at time T (exact control) entails 

coupling of these two systems. In this context, we mention that the adjoint system 

is energy conserving, while in the original system, it should decay during the control 

process. 
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E X A C T  C O N T R O L L A B I L I T Y  O F  T O R S I O N A L  

V I B R A T I O N S  OF A N  I N T E R N A L L Y  

D A M P E D  F L E X I B L E  P A N E L *  

2.1 I n t r o d u c t i o n  

In the preceding Chapter, we have discussed the exact controllability of torsional 

vibrations of a hybrid flexible space structure in the form of a solar cell array. The 

mathematical formulation of the governing partial differential equation was free from any 

damping term. But as a correspondence of physical reality, inherent material damping 

of the structure, however small it may be, is always appeared in real materials (cf. 

Christensen [16]) as long as the system vibrates. We adopt here the simple Kelvin- 

Voigt model (dashpot in series with a spring) for the viscoelasticity of the structure. 

In this Chapter, we like to demonstrate the exact controllability of torsional vi- 

brations for the geomertically same hybrid structure as in Chapter 1, for a rectangular 

elastic panel with a rigid hub hoisted at one end and totally free at the other end. The 

panel is assumed to possess material damping mentioned above. Incorporation of small 

distributed viscous damping of the Kelvin-Voigt type appearing as an internal resistance 

opposing the strain velocity, makes the problem more realistic. There is basic alteration 

in the mathematical consideration in view of additional higher order derivative term in 

the governing torsional vibration equation. 

2.2 M a t h e m a t i c a l  Formulat ion  

As in the last Chapter, we consider here a simple hybrid structure consisting of 

a uniform rectangular elastic panel of length I held at one end by a rigid hub and 

the other end totally free. Our particular interest centres around the result of exact 

controllability of the internally damped torsional vibrations of the system, achieved with 

*The contents of this chapter have been published in the paper Ezact Controllability and Boundary 
Stabilization of Torsional Vibrations of ms la~ermtlly Damped Fleziblc Space Structure --Gorain and 
Boee, 'Journal of Optimization Theory and Applkstions', Vol. 99, 423-442, (1998). 
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the help of a suitable control torque Q(t) applied to the rigid hub in some finite time 

interval [0,T]. Internal material damping of Kelvin-Voigt type is assumed to be present 

as a simple model of internal damping of this panel. 

Referring to the schematic Figure 1.1 in Chapter 1, if Ch(t) is the rotation of the 

rigid hub and Cp(x, t) that of the panel at the position x along the span of the panel 

relative to the hub at time t, then the total rotational angle r = Ch(t) + Cp(x,t) 

of the panel satisfies interndlly damped torsional vibration equations 

r162  O < x < l ,  0 < t < T ,  (2.1) 

where dots and primes denote differentiation with respect to time coordinate t and 

space coordinate x respectively. The constant c is the torsional wave velocity and 

# > 0 is the coefficient of material damping of the panel which is taken to be small 

enough. Initially at time t = 0, let the panel be set to vibrations with initial values 

r = r and r = r 0_< z < I. (2.2) 

In similar fashion, if at the hub end x = 0 the control Q(t) is applied and the end 

x = l is kept free, we obtain the same boundary conditions as (1.4)-(1.6) of Chapter 1. 

Therefore, to study the exact controllability of the internally damped torsional 

vibrations of the uniform hybrid rectangular panel, ,the following initial-boundary value 

problem is to be concerned mathematically. 

"r (x,t)  = c2r + #r 0 <_ x <_ l, 0 < t < T, 

r = = < �9 < L, 

r = a r (0, t) + ~Q(t), r = O, 0 < t < T. 

Now a control torque Q(t) is to be selected appropriately, to study the exact 

controllability at some finite time T > 0, so that it drives the system (2.3) to rest at 

time t = T. Then the solution of (2.3) must satisfy 

r  (2.4) 

To discuss the exact controllability of the mathematical problem (2.3) by HUM, 

s o m e  es sent ia l  resul ts  are incorporated in the following sections. 
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2.3 A d j o i n t  S y s t e m  

Associated with each solution of (2.3), we start with 

following adjoint system 

~/(~,t) = c~0"(~,t)  - l ,~"(z , t ) ,  

0(x,  0) = 00(x),  ~ (~ ,o )  = 0 , (~) ,  

o'(o,t) = ~ ~ (0 , t ) ,  # ( t , t )  = 0, 

O(z,t), the solution of the 

0 < z  < l ,  0 < t  < T, 

0 < z < l ,  

O<t<T, 

(2.5) 

(2.9) 

where 1 E(o) = + eon(=,O)]d=. 

in which the governing partial differential equation is the adjoint of that in (2.3) in 

usual sense. In addition we assume that 00(0) = 0, 01(0) = 0 and 0~(0) = 0. Now, 

for every {00,01} E F = L2[0,/] x H-I[0,I] (where H-I[0, I] is the dual space of the 

Sobolev space Hi[0,1] of order one), the system (2.5) with sufficiently small # has a 

unique solution (cf. Showalter [81]). For # = 0, the system (2.5) coincides with the 

wave equation of pure elastic vibration having unique solution (cf. Lions and Magenes 

[53], Showalter [81]) for every {00, 01} E F. Existence of these smooth solutions ensure 

that the solution O(z,t) tends to the elastic solution O~(z,t) when # --+ 0. For, the 

difference of the solution [0(z, t ) -0r (z ,  t)[ is bounded above by a quantity proportional 

to g and thus tends to zero as # --, 0. 

To each solution of (2.5), the total energy at time t is defined by 

1 t(0 2 --~-0c2a'2 E(t) = fo + c~O'~)d~ + (0,t) .  (2.6) 

Differentiating (2.6) with respect to t and using the first equation of (2.5), it gives 

= g/o' - . /o '  00"a= + t) (o, t). .E(t) 

Integrating by parts and applying the boundary conditions of (2.5), we have from above 

= # a ~ ( O , t )  "b" (0,t) + # fo ~ 0'2dz. (2.7) /~(t) 

The integral term on the right hand side of (2.7) shows that some energy is generated 

throughout the system which is due to the presence of some internally distributed force 

(-#/~") in the adjoint system (2.5). Integreating (2.7) from zero to t, we obtain the 

energy integral of the system as 

J0  ,,/o ,10 
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Evidenly, if # = O, E(t)  = E(0) and the energy is conserved. Both the forms (2.6) 

and (2.8) have been used in the following. 

2 .4  B a c k w a r d  S y s t e m  a n d  O p e r a t o r  A 

Here we consider r  t), the solution of a time backward system 

( z , t )  = c2r  + # r  0 _< z _< l, 0 < t < T, 

r  = 0, r  = 0, 0 < z _< l, 
(2.1o) 

r a r (0,t) + )~/~0 [8(0,t) + c~0(0,t)], 0 < t < T, 

r = 0, 0 < t < T ,  

where /30 is a constant independent of t. The solution of the nonhomogeneous 

boundary value problem (2.10) depends on the properties of 8(0, t) and 0(0, t) and 

hence on the initial values 00 and 81 o f  system (2.5). Now for given {Oo, Ox} E F, 

the system (2.10) has a solution r  as before for the system (2.5). We can then 

easily obtain r  and r 

Now multiplying (2.5) by r 

after subtraction we obtain 
and (2.10) by 0, and integrating over [0, l] • [0, T] 

: C'fotfoT:---~(O'r162 

- 

Applying boundary conditions of (2.5) and (2.10), it leads to 

, T r 0 [O'(O, t )r  

§  ]o ~ [~, [o(o,,)~(o,,)- ~(o,,)o(o,,)1 - .  [o(o,,)~(o,,)§ ~(o,,)o(o,,)1 ] ~, 
which after a simple calculation yields 

f0 t [00(r #r162 = C rio T [c202(0,t) - g2/}2(fi ,)]dr (2.11) -~"v kv, 

since 0o(0)= 0, 01(0)= 0, 0k(0)= 0, where C = ~ o ,  and 

r -- r r = •(z,O). (2.12) 

At this stage we define an operator A as 

A{Oo,01} = {r  -- # ~ ,  -- r  (2.13) 
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Then from (2.11) and (2.13), the functional 

(Oo, O~} -~ (A(Oo, O~}, (0o,0~}) 

is given by 

~Oo, O~,~Oo,O~ = ~/o~ ?o, lo,~- ~,~o,~]~. ~.~ 
In the manner of Lions [52], for T large and # small enough, we shall verify that the 

functional defined by (2.14) defines a norm on the initial values {00, 01}, equivalent to 

the norm of F, i.e., 

I1<oo, o~>ll; - c ]o ~ [~,o,<o,,)- "'~,,~ ~)]d~ /2~5) - ~ " v  kv ,  

for T > To and # < Po. To and /to are defined later in equations (2.34) and (2.37). 

2.5 E s t i m a t e  of  t h e  Leas t  C o n t r o l  T i m e  To 

In this section we shall first prove the following Lemma. 

Lemma 2.1. Let 0(x,t) be a solution of (2.5) then 

I/o '/o~ ~~176 -~ ~ ' [~o~ § ~./0'/o~ ~-  ~" '~-~  ~~ ~/~] 
where 

Proof.  We have 

, T l ' T(O,, c'O"') 

Now multiplying the governing differential equation of (2.5) by (T - t)0" 

integrating over [0, l] x [0, T], we obtain 

T l 1 l T t)OO,2dxdt 
Lib 

_ c~ I T t)~_O,,~dxdt P _ 

Using the boundary conditions of (2.5), (2.18) gives 

/o'I" ~ +l~ ( T -  t)O"'dzdt - ~ 0 (O,t)dt. (2.19) 

Hence the Lemma follows from (2.17) and (2.19). 

(2.17) 

and then 
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Now we establish the following two inequalities, which wil l  be later used for con- 

trollability of the original problem. 

For # </~o, there exist positive constants Co, C1 and a number To such that 

~o(~ ~o)[Jl~ott~o,, ~l~,lt~ ,~o,~] < ~/o ~ po,(o, ,)-  ~_.'~,,~ ~)]~ 
<_ CzT[llOoll~2[o,,] + II0111~-,[o,,]]. (2.20) 

To establish the above inequalities in (2.20), we shall need to present the following 

two inequalities by multiplier technique. 

2a foT [C202(O,t) _ #~..2c "-~0 (0, t)]dt >_ I - A I z -  B # 2 ( T -  + K (2.21) 

and 
O~ ~OT [C2~2(0,~) - #2":2"~0 (O,t)]dt < 2TE(0) (2.22) 

for 0 < # < #o, where K > 0 is a real and A, B are some positive constants 

independent of #. 

For this, we multiply the first equation of (2.5) by xO' and integrate by parts over 

[0, l] • [0, T] and obtain 

T l _ 1  r l 1 t ~r O2 dxdt = c 2 

C 2 1 T ! # 
t jodX + # f o  (2.23) ~ / o / o  o". . . ,+~/oiO"l  ~ ' ~ " ~/o/o o"...,+~/oiO"l~ o xO'O"dxdt. 

After a simple calculation (2.23) yields 

T C 2 ~  T T 1 

-~-/o'[O.'l~,=-,Z'Z~=~o..,.,. ( . . )  2 t JO 
where we have used the boundary conditions of (2.5) and the energy equation (2.6). 

Now if we set 

k l X = zO'Odz  

then  we have  
l l IXl _< ~/o'(O' + c'O")d= = -[E(~)o - -V0  ~'~ : '  (0,0]. 
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Hence, 
C 20t  "-2 " 

On the other hand, we note that 

# ' dx<_~[E(T)  ~ ( ,T)]. (2.26) ~(o)< ~ ]o [o'"]~ " _e.O,.o 

Introducing (2.8), (2.25) and (2.26) in (2.24), we have therefore 

'-./o" o,(,,,>~, + o Z" [~e,(o,,>- ~'(o,,)] ~, 
2l > [~ - ( ~  + ~,)] ~<o> +o[(~ +.)0.(o ~)-  .(~, + !)0(o, ~)~(o ~> 

+. l  T ,  T tlY'(0,tldt] f'fT(r-tlO"e~dt 7/o ~ (~ " Jo ( r -  +'~o ~o 

' ' " e" "lJo ]o ~O'~ (2.27) -.(~, + ~)]o/o ( +~.o,,')~.,- ' " 
where we have used the relation 

/o" (/o' <(')~') ~' - -  Z ~(~- ')~(')~' ('") 
for any integrable function f on [0, T]. This follows from change of order of integration 

in the double integral. Using (2.19) and Lemma 2.1, we obtain from (2.27) 

l r a r [ ~ 0 ' ( 0 , t )  # ' ' ' '  , I  0,(,,,)~,+/o ,_ ~o (o,)]~, 
Ic 21 31 ~)TG(0)  a[(•  _> [ r - ( 7  + ~1]~(o1-.(g + + +.1~'(o, r) 

- . (~  + !)o(o, ~)~ (o,~)+ . (~  + ~->o,/o ~ ~' (o,,)~,-./o'(~-,) ~' (o,,>~,] 

+.[/o'/o'(~-,>0,,~.,-.(~ + ~)/ ' /o'(~-,)0. '~.,].  (,.,,> 
We note that as g ---, 0+, the two integrals in the expression 

tend to corresponding integrals for the pure elastic case 0e(z)t). Hence there exists a 

constant /zl > 0 such that 
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for # < # l .  Now we may define a positive constant Ko such that 

(2.30) 

G(0) _< KoE(O). (2.31) 

Use of (2.30) and (2.31) in (2.29) gives 

_~ [ T ( 1 - A # - B #  ~) (2/ 
- c + c~)]E(0) 

"f0 +a  ( + #)02(0,T) + -~- O~(O,t)dt + ~ 0 (O,t)dt 

(2.32) 

By argument similar to that regarding the existence of #1 > 0, the last expression 

within the brackets on the right hand side of (2.32) can be made nonnegative for tt < #2. 

Inequality (2.21) then follows from (2.32), where 

K = t f [  ~(i , t)dt  > t f [  O'(l,t)at - -  > O, (2.33) 
4 .  f [  [ c ,~ (o , t ) -  ~2(o , t ) ]dt  - 4 .  f [  c2~(O,t)dt 

and 

To = 21/c + #/c 2 (2.34) 
1 - A #  - B #  2 

3 KoI Ko  
A =  2 c ' B -  c2. (2.35) 

It should be pointed out that the roots of the quadratic equation 1 - A# - B# 2 = 0 

are real, one negative and other positive. The expression 1 - A # - B #  2 keeps the positive 

sign unchanged between the roots. As we have assumed that # > 0 is small enough, 

so 1 - A # - B #  ~ > 0  for 0 < # < # 3 ,  when #3 is bounded above by the positive 

roots of 1 - A # -  B#~= 0. 

For the proof of (2.22), we consider the energy equation (2.6). Introducing (2.6) in 

(2.8), we obtain 
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C20~ 1 I t .  2 ~ 2 E(O) "~ l,,~ ]o ~ (0, ~)a~ o co, t)= -[+ ]o (o + ae')d~ + 

The expression in the bracket on the right hand side becomes positive as 

hence by the same argument to that  regarding the existence of /q > 0, 

#4 > 0 so that  (2.36) can b'e written as 

Hence 

Let us now define 

r "2 
+2 o (o,t) < E(O), tt < #4. 

a foT [C202(O,t) - tt2"'2~9 (0~ t)]dt < 2TE(0).  

(2.36) 

# ~ 0+, 

there exists 

Then X(z,t) satisfies 

~(~,t) - dx"(~,t) + ~"(~,t) = d ( z , t ) - c  2 f 0"(~,0dt + #0"(~,0 

= ~(x,t) - / ' [ ~  (x , t )+ ~,~"(~,0]dt + ~,O"(~:,t) 

= 0 

= mill (2.3Z) go l<i<_+{g+}. 

Now by Poincare inequality (cf. Aubin[1]), we know that the norm (f~ f'~dz)�89 is 

equivalent to the Ht[O,l] norm of f ,  provided f (zo)  = 0 for 0 < zo _< I. Therefore 

from (2.21) and (2.22) we can write 

Co(~ - ~o)[ttOolt~,~o,,~ + iio, tl~[o,,~] _< c /o ~ [ebb(o,, ) -  ~o"'"(o, ~)],~, 

< ClT[ll0oll~,to,~l + II0111L2to,t]] (2.38) 

where Co and 6'1 are suitable positive constants. 

To establish the actual inequalities in (2.20) we define a function X(z, t) as in the 

p reced ing  Chapter,  by the indefinite integral 

f X(z,t) = O(z,t)dt. (2.39) 
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that means, X(z, t) satisfies the following system: 

$~(z,t) = c2x"(z , t )  - ~ " ( z , t ) ,  

/o 
x(z,  o) = O(~,,t)dt = x .  (say),  0 _< z _< t, 

~ ( x , O )  -" O(x,O) "" 0 0 "-- ~1 ( s a y ) ,  0 < x < l, 

/' x ' ( 0 , 0  = O'(O, Odt = a~(0 , t )  = a ~ ( 0 , t ) ,  0 < t < T, 

X'(t ,t)  = 0 ,  

O < z < / ,  0 < _ t < T ,  

(2.40) 

0 < t < T .  

Therefore the system (2.40) is analogous to the system (2.5). Hence in similar fashion 

we can derive the inequalities in (2.38) for X(Z,t) and since ~(x,t) -- 8(x,t), which 

eventually lead to the inequalities in (2.20). 

2.6 Exact Controllability Result 

In this section we shall prove the exact controllability theorem using HUM which 

is due to Lions (cf. [52]). The exact controllability for the solution of the system (2.3) 

follows from the following theorem: 

T h e o r e m  3.1. Let T > To and # < #o, then for every r E H2[0,I] and 

r E L2[0,/], there exists a control function Q(t) E L2[0, T] such that r the 

solution of the system (2.3) satisfies (2.4). 

Proof.  Inequality (2.20) implies that if T > To and 

a norm of {0o, 01} equivalent to the norm of the space F, 

smooth functions (0o,01}. By virtue of (2.13), (2.14) and the left inequality in (2.20), 

we can use Lax-Milgram theorem (cf. [1]) to conclude that A is an isomorphism from 

F to F' .  Since H2[0,/] C Hi[0,/], there exists {00,01} E L2[0,I] • H-l[0,/] such 

that 

< #o, (2.14) defines 

being the completion of 

A{0o,0 , }  = (r - , r  - r  (2.41) 

for given ( r 1 6 2  E F t. Finally, if we take the control Q(t) =/To[0(0,t) + ~0(0,t)], 

for the original problem (2.3), where 0(z,t) is the solution of (2.5) with {0o,01} as 

solution of (2.41), then from (2.13) we have that the function r  the solution of 

the system (2.10), satisfies r = 4bo and r = 461. By the uniqueness of the solution, 

we conclude that 

r  = r  

and the result (2.4) then follows from system (2.10). 



Exact Controllability of Torsional Vibrations of an Internally Damped... 31 

2.7 Concluding Remarks 

The inequality (2.21) implies that the adjoint system is observable for T > To 

provided g is small enough (~t < go), where To is given by (2.34) and go by (2.37). 

Therefore a minimum time of T for exact controllability of the original problem is 

governed by To (cf. [19]). The time To may be considered as the critical time 

which is the estimated least time for exact controllability of this internally damped 

vibrations of the panel. For # ~ 0+, the approximated least value of T namely, 

21/c can immediately be identified according to the last Chapter, to the time taken 

by the torsional wave to originate and return to the control end. In our internally 

damped torsional vibrations problem, the estimated least time To is slightly (because 

of smallness of g) greater than 21/c, which is due to the presence of a small distributed 

force (-~t0") in the adjoint system (2.5). In other words, it can be conceived that the 

small internal damping resists to propagate the control wave through the viscoelastic 

panel and as a result the estimated least control time for this case is slightly larger than 

that of undamped system of torsional vibration. 



C H A P T E R  3 

E X A C T  C O N T R O L L A B I L I T Y  OF F L E X U R A L  

V I B R A T I O N S  OF A F L E X I B L E  P A N E L *  

3.1 I n t r o d u c t i o n  

In the earlier two Chapters, we have concerned about the undamped torsional and 

internally damped torsional vibrations of a flexible hybrid structure consisting of uniform 

rectangular elastic panel and a rigid hub at one end. But among the various type of 

vibrations, the transverse vibration is the most common for vibrations of beam or plate, 

appearing in the literature. In this Chapter, we study the exact controllability of flexural 

vibrations of the same geometrical flexible space structure as in the previous Chapters. 

The dynamics of the vibrations is mathematically governed by one dimensional fourth 

order Petrowsky equation or Euler-Bernonlli beam equation. The rigid hub a t~ed  at 

one end of the panel is assumed to be capable of motion in the transverse direction. 

Installation of the movable hub at one end of the panel leads to a non-standard hybrid 

system. An active control force is applied only on the hub to supress the vibrations of 

the system exactly when the motion is set from given initial displacement and velocity 

along the length of the panel. Also an estimate of the minimum time of control is 

obtained theoretically by HUM. 

Due to building of larger and more flexible space structures, designing and ~ibration 

control of these ,have received a great deal of attention. The vibration control of flexible 

space structures very signficant from both mathematical and engineering points of view, 

belonging to the distributed parameter control problem. In engineering literature, the 

convenient and practical approach manifested into these problems is to decompose the 

vibrations into normal modes and consider only first few modes to reduce the problem 

to a finite dimensional state space representation (cf. Bontsema et al. [3], Fukuda et al. 

[22,23,24], Matsuno et al. [59]) while, in mathematical literature, the same is treated 

as distributed system governed by partial differential equation (cf. Lions [52], Lasiecka 

and Triggiani [47,48]). 

*The contents of the chapter have been published in the paper Ezact Controllability of  a L i n e r  
Euler-Ber~ulli  Panel ---Gor~in ~nd Bose, 'Journal of Sound of Vibration', Vol. 217, 63?-652, (1998). 
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The question of controllability and stability for the vibration of the Euler-Bernoulli 

beam clamped at one end, with boundary control at the other end has been studied 

theoretically by Littman and Markus [54,55]. The idea is extended by Markus and You 

[58] to obtain an approximate control system. The problem of controllability and stabil 

ity for serially connected beams with actuators and sensors co-located at nodal points 

has been discussed by Chen et al. [12]. Morgiil [66] treated the case of controllability 

of Euler-Bernoulli beam u~ng the energy functional of the system while Nagaya [68] 

looked forward to cancel resonances subject to forced vibrations applying inertia force 

cancellation method. The controllability of hybrid elastic system governed by Euler- 

Bernoulli beam equation clamped at one end, with boundary control at the free end has 

been discussed by Littaman and Markus [54], and the result of it later generalised by 

Rao [73]. 

3 . 2  M a t h e m a t i c a l  F o r m u l a t i o n  

As a simple model, we consider a uniform rectangular flexible panel hoisted by a 

rigid hub at one side as shown in Figure 3.1. The panel of length l, unit width, having 

uniform mass density m per unit length, is rigidly attached with the hub of mass 

mh at one end and totally free at the other end. The attached end can be thought as 

lumped mass capable of lateral motion under active control force. Our aim is to control 

the vibrations of the panel exactly by applying suitable control force Q(t) on the rigid 

hub, in some finite time interval [0,T], when it is initially set in motion. If yh(t) be the 

transverse displacement of the rigid hub and yp(x,t) that of the panel at the position 

x along the span of the panel relative to the hub at time t, then the total transverse 

deflection can be written as 

y(x , t )  = yh(t) + yp(z,t),  0 < z < l, 0 < t < T. (3.1) 

Let us assume that the vibrations undergo only small deformations, i.e., IV(x, t)l < <  l 

and I(Oy/ax)(x,t)l < <  1, and neglect the gravitational effect and rotatory inertia 

of the panel cross-sections. Then y(z, t) satisfies the one dimensional fourth order 

Petrowsky equation 

o2v t) 0, 0 _< x ___ t, 0 < t < T, (3.2) + Db-  ,Cx, = 

where D = ( 1 /12 )Ehn(1 -  v2) -1. The constants D, E, v and h are the flexu- 

ral rigidity, the Yotmg's modulus, the Poisson's ratio and the thickness of the panel 

respectively. 
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Y 

X 

F i g u r e  3.1. Schematic of the rigid hub and the panel [or flexural vibrations. 

At the hub end x = 0 where the control force Q(t) is applied, the hub dynamics 

yields the differential equation 

toYh I~ mh-~k~] Jr D (O,t) § Q(t) = O. (3.3) 

Again since yv(O,t) = 0, it follows from (3.1) that  y(O,t) - yh(t) and also we have 

(Oy/i)z)(z,t) = (Oyp/Oz)(z,t). Hence the equation (3.3) becomes 

tOy 02y 
~-hxa (0, t) + a - ~ - ( 0 , Q  + SQ(t) = 0, 0 < t < T, (3.4) 

where a = ma/D and A = l ID  . Assuming at x = 0, that  there is no rotational 

deflection of the panel relative to the hub (i.e., panel is built-in position with hub at 

z = 0), we have (Oyv/Ox)(O , t) = 0, implying 

OY (0,t) - 0, 0 < t < T. (3.5) 
0z 

Since the panel is assumed to be free at z = I, so at this end 

toY(l, tOy t) 0, 0 < t < T. (3.6) ~"i~, t) = 0 and ~xa(l, = 

Let the panel be set to vibrations with arbitrary initial values 

y(x,O) = y0(z) and z,0)  = yl(z) ,  0 <_ z _< I .  (3.7) 
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Therefore, the mathematical model to be studied for exact controllability of flexural 

vibrations of a uniform rectangular flexible panel with a rigid hub at one end, is governed 
by the system of equations: 

O2Y 04Y t) O, m ~ ( z , t )  + D~-~4-z4Cz , = 

02 v 
(o,,) + ~-b-(o,  t) + ~Q(t) = o, 

c92Y (l, t~ -g-~, ~ = O, (l,t) = O, 

011 and ~-~(z,0) v0,,o) = vo0,) 

0 < z < / ,  0 < t < T ,  

~(O,g)  = O, 0 < t < T, 

O<t<T, 

= vl(z) ,  0 <_ z _</. 

(3.8) 

3 . 3  A d j o i n t  S y s t e m  

Associated with each solution of (3.8), we consider with 0(x,t), the solution of its 
adjoint system: 

020. 040 
m0-F(x,t)  + D~-Z~ (z,t) = 0, 

o ~ ( o , t )  t) o, 
020. 

+ ~ - ( o ,  = 

020 
b-~ (l, t ) = o ,  

O(z, O)= Oo(z) and 

0 < z < / ,  0 < t < T ,  

O0 0 t  ~-~z(, ) = 0 ,  0 < t < T ,  

030(I, t)  : 0, 0 < t < T, 
0z 3 

00 
~ ( z , 0 )  = 01(z), 0 < z < l, 

(3.9) 

under the assumptions 00(0) = 0 and 01(0) = 0. Now for given {00, 01} in the space 

F = L~[0,/] x H-2[0,/], the system (3.9) has a unique solution 0(z,t) (cf. Lions and 

Magenes [53]) for 0 _< z <_ l, 0 < t < T, where H-2[0,I] is the dual space of H2[0,/] 

and H2[0, l] the sobolev space of order 2, given by 

H2[0,/] = { f  I f e L~-[0,/], of o~f e z2[0,t], ~ L2[0,t]}. 

To every solution of (3.9), the total energy E(t)  at time t is defined by 

l i t  [ r#O~,~ _r020,~1 1 00 2 E(t) Jo + (3.10) 

Differentiating with respect to t and replacing m(~FO/at 2) by -D(040/az4) ,  we 
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obtain from (3.10) 

o,o o,o o o z e  oo o,o 
- -  = -~z3)d~, + mh-~(O,t)-g~(O,t). 
dt Oz ~OtOm Om ~ Of 

Integrating by parts and applying the boundary conditions of (3.9), the above after a 

simplification gives 
dE 

= 0  
dt 

since a = mh/D, which implies 

E(t) = constant = E(O) for 0 < f < T, (3.11) 

where 

since 

1 z O0 020 2 
 lo) - + 

01(0) = 0. Thus the adjoint system is energy conserving. 

(3.12) 

3.4 Backward Sys tem and Operator A 

On the other hand, marching backward in time, we now consider a system : 

m-~-Cz , 0 2 $ "  t) + D~-~z4(z , 04r t) = 0, 0 < z < l, 0 < t < T, 

03r s (0,t) + a ~ - ( 0 ,  02r t) +/~oA0(0,t) = 0, 0~-(0, t) = 0, 0 < f < T, 

02r 
-g-~ ~ ( : , t ) = o ,  

(3.13) 

0•3(/,g) = 0, 0 < t < T ,  

0r "z 
r = 0 and - ~ ( , T )  = 0, 0 < z < l, 

where, /~0 is a constant independent of g. From the nonhomogeneous boundary value 

problem (3.13), it is clear that solution r depends on the initial values {80, 81) 

of (3.9), since 8(0,t) explicitly occurs in the boundary condition of (3.13). Now for a 

given {80, 81} E F, the system (3.13) has a solution r  (cf. Lions and Magenes 

[53]). Thus knowing r the functions r and (0r can easily be 

obtained. Therefore we can define an operator A uniquely as 

^{Oo, o~) = (r -r  (3.14) 

where r and 4~x =(a~/Ot)(z,O).  
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We shall now estimate the functional 

{Oo, Ol} -~ <A{Oo, o,}, {Oo, oi}> 
given by 

<A{eo, o,}, {Oo, O,}> = ]o'(Oo0, - O,r (3.15) 

For this, we multiply the first equation of (3.9) by r and that of (3.13) by 0, 
integrate over [0, l] x [0, T] and then subtract : 

-~z ~.'-ff~z 2 0z ~ ~ )aza~ = O. 
Using the boundary, initial and final conditions of two systems (3.9) and (3.13), a 

stralghtforwaxd calculation gives 

,.Jo'(OO~,l - o,~,o)d~ = e 0 J 0 " e ( 0 , O d ~  

0 ~ ~'.o'o o o(o, tl~(o,O]dt - o , ~ J o  [ ~ ( , t l o ( o , t )  - 

which after simplification finally yields 

fot(Oo@l - Oxr = C  foTO'(O,tldt (3.16 I 

by the systems (3.9) and (3.13), where C = 13o/m. Thus the functional (3.15) is 
obtained as 

Following Lions [52], we shall verify that for T > To (To is estimated in the next 

section), the right hand side of (3.171 defines a norm on the initial values {0o,0x}, 
equivalent to "the norm on the space F, i.e., 

(3.181 

3.5 E s t i m a t e  o f  the  Least Contro l  T ime  To 

To estimate the least time to control the system (3.8) by HUM, we require to 

establish the following two inequalities. 
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for some positive constant K. 

For this, we now multiply the first equation of (3.9) by (l-z)(OS/Ox.) 
by parts over [0,l] x [0,T], and use of the boundary conditions of (3.9) to obtain 

OOOO 1 r 1 t :r 

g//oo=o 
+1) Oz Ox ----gdxdt = 0. 

Again integrating by parts and simplifying, the above leads to 

Since (OO/Oz)(O,t) = O, 

l T 00 2 00 00 1 z o , 0  , 

1 t T r /00~2 _ + 0 2 0 \ 2 ]  > ZZ + _ -  Lmk-~) vk-~-~x2) ]dt. 
from Wirtinger's inequality (cf. [80]), we can write 

On the other hand, if we set 

then using the inequality 

t (00~2 41~ I ,020,2 
f0 0-zzJ dz < ~ -  f0 

_ ~o-~) d=. 

fo O0 O0 '(l-:)~ X = m ~-dz  

l (ea2 + lb2 labl <_ ~ ) 
for any real positive e, we can majorize (3.22) as 

, ao e.~__ , r too , ,  ,~' (ao~,] 
_ _ [mk~ ) D~fi ~,-~z] jdz 

and integrate 

(3.20) 

(3.2~) 

(3.22) 

(3.23) 

212 m 
--~.-,V/-'DE(t) 

by inequality (3.21) and energy relation (3.10). Hence, 

- r V  D [E(T)+ E(0)] = --~-~/-~E(0) 

in virtue of (3.11). 

(3.24) 
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Introducing (3.10) and (3.24) into (3.20), we have therefore 

mh T , 0 0  0 l r O0 2 o , o  , + 

T 412 m 
~- fo E(t)dt- 7r ~ E ( O )  

- - - -  E . 0 . ( ) _  

7[" 

Again if we set the positive constants K and To by 

(3.25) 

00 020 2 

mhfo T (~(O,t))'dt 

and 

then it follows from (3.25) that 

(3.26) 

4l 2 /~ -  
To = 7r V D '  (3.27) 

fo T 00 2 m~'12 ~ + gt)  . .(yi(O,t)) dt _> ( T -  To)E(O). (3.28) 

Physically the value of K is the ratio of the total kinetic and bending energy at 

the joint of the panel with the hub, and that of ki,netic energy of the hub. Since the 

energy of the system is conserved, K is bounded above for all T. 

Again integrating the energy relation (3.10) over [0, T], we can write easily 

mh [T O0 
2 . .  ( ~ ( o , t ) )  dt __ TE(O) (3.29) 

with the help of (3.11). Hence we have the result (3.19) from (3.28) and (3.29). 

We now define a premitive function r t) satisfying the indefinite integral 

#2(z,t) ocx,t)dt. (3.30) 

Then r  satifies 

a2r a4~ 
00 f t  840 

a O f f  020 

= O. 
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Thus r  satisfies the system: 

02r 0'r 
m ~ - ( z , t )  + D~-x4 (z,t) = 0, 

0sr 02r 
~-~ (o,0 + ~ - ( o , 0  

03r 
b-~: (t,t) = o, 

/ 1 
0r  = 0(z,0) = 0o = r say, & 

=o, ~162 

OsCtl t) = o, 

say, 

0 < z < / ,  0 < t < T ,  

= O, O<t<T, 

O<t<T, 

O < z < l ,  

O < z < l .  

(3.31) 

We observe that the system (3.31) is analogous to the system (3.9). Hence the in- 

equalities in (3.19) can be used for r t). Since (ar  t) = 8(z, t), using the 

inequalities in (3.19) for the solution of the system (3.31), we have 

T e ,-,:0~r "~h r 

,. :o 
T - To z 02r 2 

By Poincare inequality (cf. Aubin [1]), it follows that the norm 

a~r = [ '  (0~r , 
dz O-~-z211u[o, t] Jo ~0z 2/ 

is equivalent to the norm of r in H2[0,1]. Therefore, there exists positive numbers 
Co and 6'1 such that (3.32) can be written as 

<~[llr + Jl~oll~,~o,]] _> ~/: (-~(o,,))~, 
>_ Co(T - To) [ilCxl 'lL, to.,] + I1r IH'[O,,]]' �9 (3.33) 

Thus the above eventually yields 

c,~[llOoll~,[o,,] + IIo,1:,,-,~o,,] >_ C ]o" (o(o,,))'d, 

>_ Co(T- To)[ll ollL, t o ~ ] 0  ' + llOl[l~-,[o,t]], (3.34) 

in virtue of (3.30). The inequalities in (3.34) will help to estalish the exact controllability 
result by HUM, in the following section. 
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3.6 Exact Controllability Result 

To study the exact controllability at some finite time T > 0, we require to select 

an appropriate Q(t) for the system (3.8) such that it drives the system to rest at time 

t = T. Then the solution of the system (3.8) must satisfy the desired final state 

y(z,T) = 0 and ~(~,T)  = 0, 0 _< z _< l, (3.35) 

and this follows from the ensueing theorem. 

T h e o r e m  3.1. Let T > To, then for every Yo 6 H~[0,I] and yl E L2[0,I], 

there is a control function Q(t) E L2[0, T] such that y(z,t),  the solution of the system 

(3.8) satisfies (3.35). 

Proof .  From the inequalities in (3.34), we can conclude that for T > To, (3.17) 

defines a norm of {8o, 01}, which is equivalent to the norm on the Hilbert space 

F = L2[0,/] x H-2[0,/]. From the right inequality of (3.34), we can invoke the Lax- 

Milgram theorem (cf. Aubin [1]) in virtue of (3.14) and (3.17) to conclude that A is 

an isomorphism from F to F '  where, F '  is the dual space of F. Hence for given 

{9o, 91} E F ' ,  there exists {8o,81} C F from the relation 

{0o, Ol} -- A -I {Yl,-Yo}. (3.36) 

Now if we take the control Q(t) in (3.8) of the original problem as proportional to 

O(0,t) say, Q(t) =/~o0(0,t), where 8(x,t) is the solution of (3.9) with {8o,01} as 

solution of (3.36), then from (3.14), we have that the function r the solution 

of the system (3.13), satisfies ~o - Y0 and r = yl. By the uniqueness theorem we 

finally conclude that 

r -- y(z,t), 0 <_ x <_ l, 0 < t < T, (3.37) 

and the result (3.35) for exact controllability of the original system (3.8) then follows 

from the system (3.13). Hence the theorem. 

3.7 Concluding Remarks 

In mathematical literature, (3.34) provides an observability result for positivity of 

right hand side of it. Thus the adjoint system is observable for T > To. Hence the 

vibrations of the ori~nal problem can be exactly controlled for T > To by Dolecki and 

Russell [19], where To is given by (3.27). Therefore the time To can be described 

as the estimated least time for exact controllability of this system. Though we have 
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established the results for transerve vibrations of a flexible panel at tached to a rigid 

hub at one end, in this context it should be mentioned that ,  the results are analogously 

also valid for an Euler-BernouUi beam held by a rigid hub at one end. In this case El, 
the flexural rigidity of the beam takes the place that  of D of the panel. 

An interpretat ion of To is as follows. The frequency of vibrations of a uniform 

panel (or bar) fixed (clamped) at z = 0 and free at z = l is (1/27r12)~/~/m p2, 
where p is a root of the equation (cf. Clough and Penzien [17]) 

cos p cosh p + 1 = 0. (3.38) 

The roots of (3.38) are approximately given by pl = 1.875, p2 = 4.694 etc. If T be 

the time period of the first (gravest) mode of vibration then 

_ 2 ~ ' I  2 (3.39) 

Therefore 

To _ 2p~ _ 0.71 (approximately). (3.40) 
7" 7r 2 

Hence To is somewhat less than 7. The deflation in time period may be ascribed to 

the  compliant motion of the end z = 0 towards the equlibrium position y = 0. 



C H A P T E R  4 

E X A C T  C O N T R O L L A B I L I T Y  OF F L E X U R A L  
V I B R A T I O N S  OF A N  I N T E R N A L L Y  

D A M P E D  F L E X I B L E  PANEL* 

4.1 I n t r o d u c t i o n  

In this Chapter, we want to extend the result of exact controllability for the flexu- 

ral vibration problem of the Chapter 3, by incorporation of the small internal damping 

(Kelvin-Voigt model of viscoelasticity) of the material. This distributed small viscous 

damping of internal resistance opposing the strain velocity during the process of vibra- 

tion, makes the dynamics of the vibration more realistic in form. The motivation of 

incorporating internal damping of the elastic structure arises due to the fact that such 

an effect however small it may be, always appears in the dynamics of physical systems 

(cf, Christensen [16]). There is significant difference from mathematical point of view 

due to incorporation of internal material damping of the viscoelastic structure, even 

though it it a similar geometrical problem, modeled by a rectangular flexible panel, 

attached to a rigid hub at one end on which an active control force is applicable and 

totally free at the other end, as in the last Chapter. With this manifesto, using HUM, 

it is to be established theoretically the exact controllability of the hybrid system in as 

much as short time, to achieve the desired null controllability result. 

4.2 M a t h e m a t i c a l  Formulat ion  

We consider here the same hybrid structure, consisting of a uniform rectangular 

elastic panel, having of length l, unit width, uniform mass density m per unit 

length and a rigid hub hoisted at one side of it with totally free at the other as shown 

in Figure 3.1, in the previous Chapter. Let us assume that small internal material 

damping, uniform of constant measure /~ > 0 (in the Kelvin-Voigt type) is i~resent for 

*The contents of this chapter have been commmunicated in the form of a paper Ezact coairollability 
aad BouadaTll Stabilization of Flezu~d Vibretiz~s of aa Ia~eraally Damped Flezible Space Structure - -  
Gorain and Bose, 'Applied Mathematics and Computation'. 
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the panel material. Here the objective is to control the vibration of the system exactly 

i.e., to achieve the null controllability by application of an appropriate active control 

force Q(t) on the rigid hub, in some time interval [0, T] when it is initially set in 

motion. Referring to the schematic Figure 3.1, if 9h(t) be the transverse displacement 

of the rigid hub from some equilibrium position and 9p(x, t) that of the panel at the 

position z along the span of the panel relative to the hub, at time t, then the total 

transverse deflection 9(z, t) = 9h(t)+9p(z, t) satisfies the Voigt-type internally damped 

transverse vibration equation (cf. Clough and Penzien [17]) 

02y 05y 8~y 
m--.~-~(x,t) + IzD-~---~-~(x,t) + D-ff~xd(:r.,t ) = O, 0 <_ x < l, 0 < t < T, (4.1) 

under the assumption that the vibrations undergo only small deformations, that means 

ly(x,t)] < <  l and ](Oy/Ox)(x,t)l << 1 and neglecting the gravitational effect and 

rotatory inertia of the panel cross-sections. We further assume that the effect of the 

term #D(OSy/OxdOt) in (4.1), appearing due to consideration of Kelvin-Voigt model 

of viscoelasticity, is very small compared to that of the pure elastic term D(Ody/Ox 4) 
in (4.1). 

Let us consider that the material of the panel is isotropic and the internal damping 

constant for the flexural vibration of the panel is same as that of the panel at the hub 

end. Therefore, at the hub end x = 0 where the control force Q(t) is applied, the 

equation of motion is 

O~ Y" I ~ ~ 03 Y, ' 
ma-~-~o j  + D~-~-xa (0,t) + ~D...~ ..o (0,t) + Q(t) = 0, 0 < t < T. (4.2) 

Taking into account the internal material damping of the isotropic panel, the above 

equation is more appropriate but a little bit different from that of (3.3) in Chapter 3. 

As y(O,t) = yh(t) and (Oy/Ox)(z, t)  = (Oyp/Oz)(x,t), the above equation thus leads 
to 

03y(0,t ) 04y 02y 
O:r3 + I z ~ ( O , t )  + a~-i-~(O,t ) + AQ(t) = 0, 0 < t < T, (4.3) 

where a = m h / D a n d  A = l t D .  As in the case of equation (4.1), the viscoelatic second 

term in the above equation (4.3), is assumed much smaller than the pure elastic first 

term. Considering that the panel is built-in position with hub at z = 0, i.e., there is 

no rotational deflection of the panel relative to the hub, we have 

0~(0 , t )  = 0, 0 < t < T .  (4.4) 

The free end x -- l of the panel yields the conditions 

&~,(l,t)  = 0 and ~-~za(/,t) = 0, 0 _< t _< T. (4.5) 
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Initially the panel is set to vibrations with 

y(z ,0)  = yo(z) and 0Y(z,0) = yl(z), 0 < x < I. (4.6) 

Therefore, the mathematical  problem to be studied for exact controllability for the 

vibrations of internally damped hybrid panel is governed by the following system. 

02y .  . 05y �9 04y 
+ # D - ~ - ~ ( x , t )  + D-~z4(z,t ) = 0, 0 < z < l, 0 < t < T, 

03y 04y 02y 
(O,t) + I . t ~ ( O , t )  + a-.~.~ (O,t) + AQ(t) = O, 0 < t < T, Oz 3 (It" 

~(o ,z )  =o,  ~ z) = o, ~ 

y(z,O) = yo(z) and 0-~Y(z, 0) = yl(z) ,  
0t 

=0, O<I<T, 

O < z < l .  

(4.7) 

4.3 Adjoint System 

To each solution of (4.7), we consider its adjoint system: 

020. t)  D 05O ' t) + 
O48 

m-~F(z ,  - I.t -.~-.~(z, D-~z4(z,t ) 

o~3(o,t) "0 t) + ~) o, 
O40 O20 

- ~ o - ~  , a~-~(0, = 
00 020 030 

(O,t) = O, ~ : ; ( l , t )  = 0, ( l , t )  = 0, 0 < t < T, 
0 z  r 0 z  s 

= O, 

o ( , , o )  = Oo(,) 
O0 

and  -~-(x, 0) ----- 01(x), 

O < z < l ,  O < t < T ,  

0 < t < T ,  
(4.8) 

O < z < l ,  

in which the differential operators are the adjoint of that in the given system on their 

respective domains. Let {00,01} 6 F = E2[0,/] x H-2[0,/] (H-2[0,/] is the dual space 

of H2[0,/]) with 0o(0) = 0, 01(0) = 0, then we know with Small g that  there is a 

unique solution (cf. Showalter [81]) of (4.8). For # = 0, the system coincides with the 

Petrowsky equation with pure elastic vibration having unique solution (cf. Lions and 

Magenes [53], Showalter [81]) for every {00,01} 6 F. Existence of smooth solutions 

ensures that  the solution 0(z, t) of (4.8) tends to pure elastic solution 0~(z, t) when 

/~ --, 0+, and obviously the difference of the solution 10(z , t )  - 0 ~ ( z , t ) l  is bounded 

above by a positive quantity proportional to #, which tends to zero as # ---, 0 + .  

Thus the solution 0(z, t)  of (4.8) is a continuous function of /~ near zero. 
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The total energy E(t) at time t of the system (4.8) is defined as 

1 1"IF t00~= 020 ~ 1 00 2 
E(Q 

Jo + 
+ 

We proceed, with the differentiation of (4. 9) with respect to t and replace m(O20/Ot 2) 
by -D(~'~0/0z 4) + I~D(O50/Oz40t), to obtain 

]o (o- 0t 0x 3 oo)] O0 03 ( 0 - # - ~  dx dE t 0 [ 0~0 02 #~) 
dt = D -~x L OtOz Oz 2 

+#ttJo -+ 030 ,~ oo 020 vL-~-~) dz + mh~-(0,t)b-i-~(0,t ) 

Applying the boundary conditions of (4.8), we get 

dE I D/  ~O ,2 
dt = I~ fo L"~"~) dx, (4.10) 

since mh = Da. Integrating (4.10) from 0 to t, we obtain the energy integral as 

E(t) E(O) + l~ f j  t 03O 
= fo D(O-~-'~v)dzdv, (4.11) 

2 

where 
1 [m O0 020 2 

~(o) = ~ fo ~ o1)' (4.12/ 
' 

Again integrating (4.11) from 0 to T, we obtain the result 

T 2 +020,21 1 T .00 O,t))2dt 

= T E ( O ) + . f o ' f T f D (  ~__0 ),d=dvd t (4.13) 
Jo J0 Oz 0 r  

The integral term in the right hand side of (4.10) shows that some energy is gen- 

erated throught the system which appears due to the presence of internal distributed 

force -l~D(~O/Ox4Ot) in the adjoint system (4.8). Since we assume that that the 

effect of the term due to internal Voigt-type damping is very small compared to the 

pure elastic term, the effect of the distributed force -#D(050/0=4~) in (4.8) will also 

be very small relative to that of pure elastic force D(O40/Dz 4) in (4.8). Hence the 

energy due to the internal distributed force is much smaller than that of pure elastic 

force. Thus we can write from (4.13) that there exists a real /~1 > 0, such that 

1 l r 020 ~ I r t 030 = . 

]o " Z  . 
Also when p = 0, we obtain from (4.11) that E(t)  = constant = E(0 )  and the adjoint 

system is energy conserving. 
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4.4 Backward System and Operator A 

Let us now consider a time backward system: 

0~r 05r ~qb'z t) 0, 0 < z < l, 0 < t < T, m - ~ ( x , t )  + g D ~ - ~ ( a : , L )  + D~-~z4t , = _ _ 

~162 a4r  "~ a~  ~o[0(0,t)- ~ ( ,  )j o, b-~CO,t) + ~o-~-o~tu,t) + a-~-(o,0 + ao o t '  = 

0'r 03r 0r =0, ~-~z~ (l, t) =0, t) 
Oz Oz 3 ~ " 

= 0  and 0_r = 0, r  
Ot 

=0 ,  0 < t < T ,  

O<z<l, 

(4.15) 

where, /3o > 0 is a constant, independent of t. It follows from the nonhomogeous 

boundary value problem (4.15) that the solution r depends on 0(0,t) and 

(00/0t)(0, t), and hence on the properties of the initial values ~, {00, 01} of the system 

(4.8). Now for a given {00, 01} in the Hilbert space F, the system (4.15) has a 

solution r as in the case of the 'system (4.8). Therefore the functions r 

and (0r 0) can be easily obtained. We then define an operator A uniquly by 

A{0o,01} = {r162 + ,r (4.16) 

where r = r and r = (aClaOCz,o). 

As in the previous Chapter, we will now estimate the functional 

{00,01} ~ <A{0o,01},{0o, 01} > 

given by 

To estimate (4.17), we multiply (4.8) by r + #(0r and (4.15) by 0 - g(00/0t), 

integrate over [0, l] x [0, T] and then subtract : 

-o ld d  m /o'/o ~ 
~ , - ~  + T a a o a r  . . .  

, �9 a o ao (o ao,  o3 

t r o  02 ~ 0 r  

+ g~-)]dzdt 

00, 0 ~ . 0r 
=0 .  
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Utilization of the initial and the boundary conditions of the systems (4.8) and (4.15), 

and then after a straightforward calculation, the above yields 

Jo'(Oo,~- O~,o - ,o~)d~ = c j r  [o(o,o -,~(o,o~~176 1 
where C = ~o/m. Thus the functional (4.17) is obtained as 

2 
dr, (4.18) 

For T > To 

norm on the initial values {0o,01}, equivalent to the norm of the spcae F, i.e., 

11<Oo, O >11:C]o [0(o,0 oo = -/~-(0, t)]'dt. 

(A~0o,0,},{0o, O~}) o / f  [o(o,0 oo = - / ~ - ( 0 , t ) ] ' d t .  (4.19) 

and # < #0, we shall show that the right hand side of (4.19) defines a 

(4.20) 

4 . 5  E s t i m a t e  o f  t h e  L e a s t  C o n t r o l  T i m e  To  

We first establish the following results. 

L e m m a  4.1. Let 0(x,t) be a solution of the system (4.8), then 

/0Tx(~)dt m T , 040 + <~ 

I - r  , 050 2 
(4.21) 

where 

(4.22) 

Proof .  Differentiating (4.22) with respect to t and then integrating by parts, we 

obtain 

dX [ 030 030 040 0"0]' 
dt - mL O-zFOt OmOt 2 Oz30t Ot 2 Jo 

+ fo z t 0~0 040, 050 m 030 040 t). 

On application of the system (4.8), it becomes 

d X  m 040 2 ~l  , 050 ,2 

dt 
(4.23) 
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since a = mh/D. Integrating (4.23)from 0 to t, we obtain 

/. ~ 1 7 6  , , , , 0 5 0 . ,  
X(t) 

Again on integration of (4.24) from 0 to T, the Lemma follows immediately. 

It is clear that the terms in the right hand side of (4.23) arise due to effect of # 

dependent term in the system (4.8), so me]terms in the right hand side of (4.21) will 

be much smaller than that of the corresponding pure elastic terms. Therefore, from the 

statements following equations (4.1) and (4.3) we can write for (4.21), that there exists 

small real quantities #2, #a > 0 such that 

- , - T - ,  850 , i f ,  tTD/ i~8 , , ,d=dt  for i ,<lZ, ,  JoJo ~ z  4) (4.25) 

and 

then 

and 

r , 040 2 I r 030 

/o/o < 
Lemma 4.2. Let 

Y ( t )  = m - x ) ~ d ~  and Z( t )  = D - . 0 3 0  040__dz, (4.27)  

IY(t)l < 21--~2 v ~ E ( t )  (4.28) 
71" 

IZ(01 < 2x(t)-  mhD(-~z3(O, t ) )  . 

Proof.  Since (O0/Oz)(O,t) = 0, 

write 
o t / 0 0 , 3  

and 
/o t " 020 .~ i O--z"~) dz 

Using the inequality 

we have from (4.27) 

from Wirtinger's inequality (cf. 

412 t (030~2 
< - ~  fo Cff~z 2 / d=, 

412 t 030 
< -~fo 2dz" 

l (ea~ + l b2 labl _~ ~ ) for any real positive e, 

(4.29) 

[80]), we can 

(4.30) 

(4.31) 

(4.32) 
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and 

12,/-~-[z 1" / 0 0 , 2  _ ~'  , 0 0 , , 1  
IY(OI-< ;V ~ Jo [ ' ~ )  + ~ L G )  ]d= (4.33) 

~,,..o t ' ~ ~ ;  + ~'(~) ]~- (4.3~) IZ(OI _< 

By the inequalities (4.30) and (4.31), the Lemma follows from the above relations (4.33) 

and (444) . 

Now we shall need to establish the following two inequalities alongwith the estima- 

tion of least control time To, which finally helps to prove the the exact controllability 
result of the system (4.7) by HUM. 

There exist positive numbers A, B independent of ~ and K, To, such that 

mh [ r  80 020. 12 1 - A# - B# 2 
TE(O) > -2- Jo [~-(0, t) - #O-~-(0,t)] dt > ( T -  To)E(0). (4.35) 

- - I + K  

By multiplier technique to establish (4.35), we multiply the first equation of (4.8) 

by (l - z)(OO/Oz) and integrate by parts over [0, l] x [0,T], and then obtain 

i . 0 0 0 0  1T 1 i r 0 [ ( ]00  2 ~020,~1 

Jo Jo 

where we have used the boundary conditions in (4.8). Again integrating by parts, the 
above can be written as 

I r oo [ (oo~2 

, , , o , 0 , ,  

+.~[[(~_ , oo~o , ,  , o,0 oo, o3o , ,  

By the use of the boundary conditions in (4.8), the energy integral (4.13) and the Lemma 
4.2, the above becomes 

l T 0 0  2 020  2 1 T 0 0  2 T 

 /oh § /o > (g (O,  t)) dt T E ( O ) -  T f t  h - -  0 

m 030 2 . 0 2 0 . 2  iT 
" ; V ~  Jo ,-a,, - - - ~ ( ~ )  ' ~ J o  

(4.36) 



Exact Controllability of Flexural Vibrations of an Internall 7 Damped... 

Now from (4.28) we can write 

212 I ~ E (  T 
In~)lo ~ -< T V ~  )§ 

- 4~r V~D E(0) g-'~-~/D j o 2 l  2 I-~ fz [T  D~O-~): 030 . ,  - + Jo d ~ a  (4.37) 

by (4.11). Again we have 

t 0'0 , o <- 2 E ( T ) - m h [ ~ (  , )] 

_L_L o~o , oo ,. = 2E(0)+ 2.  -.' -vT D ( ~ - ~ )  d x d t - m , [ ~ ( O , T ) ] .  (4.38) 

Introducing (4.37) and (4.38) into (4.36), yields 

l T 0e 2 1 T /00  0 t))2dt 

T m 030 2 [T_ (41' /-~- ( 3 1 ' ~  D [2X(t) Dr t)) ]dt , v v  ~ + ~ . ) ]~(~  ~ + ~.~)/o -m. 

' T1)(_~xd)'dxdt + . m , L ~ ( ,  

with the help of (4.22). Applying Lemma 4.1, it leads to 

1 T 00 ~ 020 2 1 T 00 2 00 T 2 [~(~(o,,)) . :~1o .~.[~(o, )1 ~/o + (~(o,,)) ]~,+ - ( g ( o , ~ ) )  a 

> I T - (  41' - 2 / ~ ( ~ V ~  + 2/~D)Tx(0 ) - . -~ /7+' . ) ]~(~  

m {312.[-~ D T ~ 040 2 
§  ~ + ~.~) [ / : ' (~ (~  ~ . / o ~ .  , ,  /o "(o~-~o~ (~ ~'] 

(l~ f-~__ D T 040 ~ T 
+"".;v ~ +"~) [/o' /o/o D(O-~-~v ) dxdT"dt] (4.39) 

Let us now we define a constant K0 > 0 independent of p, such that 

X(O) <_ KoE(O). (4.40) 

Hence from (4.39) we can write by virtue of (4.25) and (4.26) 

1 T [~(o, , )  ~176 ~ma fo - #~ ' i (  , )J dt >_ 1 + K O - AI~ - B # ' ) ( T -  TO)E(O)' (4.41) 

51 
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where 

and 

{826 I n  2] , g  ,o,,)) d, 
K =  >0 ,  

,~h g [~(o,0 - #~(o,o]2dt  

A = 612K~ ~ '  B = 4Ko Dm 

TO-. w V D _ 2 #  
1 - A #  - B #  2" 

(4.42) 

(4.43) 

(4.44) 

To obtain the reverse inequality in (4.35), we have from (4.13) 

1 r 08 028. 
[~-(0,t)  _TE(O) ~mh]o - t)]'dt ~-~-(0, < 

1 T /00",2 T "02# 0 2dr] 
- -  m~-~) d~dt- 

1 T _/C720,~ t t  , _ /  038 

/o/o ) 2dzdrdt] _ _  _ D i - O - ~  " (4.45) 

We note that the integrals in the expression 

fo z T 00 ~ rTD.020 t))2dt 
/o Jo (4.46) 

tend to the corresponding integrals for pure elastic case 0~(z, t) as # --. 0 + .  Hence 

by choosing # < #4 where #4 > 0, the expression (4.46) can be made nonnegative. 

Therefore, using the relation (4.14) the left inequality in (4.35) follows immediately from 
(4.45). 

It is obvious that the roots of the quadratic equation 1 - A# - B# 2 = 0 are always 

real, and one is positive, say #5, and other negative. We observe that between these 

two roots the expression 1 - A# - B# 2 is always positive. Since # > 0 is assumed 

to be small enough, the analysis of the above holds for # < #0 where p~ is given by 

~,o = ,~5(1 , , ) .  
We now define a premitive function r t) satisfying the indefinite integral 

f 
t 

r = O(x,t)dt (4.47) 
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Then we have 

m-gVtx, 0 - 0 +  t) g ~ ~ t z ,  L'~-~z4 tz, 

O0 040 040. 
-- m N ( ~ . , O  - ,~-K~=~(=,t) + D f '  -.K~=~C=,tldt 

O0 040 [ t  r 020 050 , 
- m-~(z , t )  - #D-~z4Cz,t ) - _ [ m - ~  - # D ~ J d t  

----0. 

Thus ~b(x, t) satisfies the following system: 

02~ 05~ 04~ 
m - ~ - ( x , t )  - # D ~ ( z , t )  + D~Tz4 (z,g) = 0, 

~ (o,t) 04~ ,~ o'-~ 

CO, t) = o, -g-~ (l , t)  = o - ~  (z,t) = o, 

0 < x < l ,  0 < t < T ,  

0 < t < T ,  

0 < t < T ,  (4.48) 

is equivalent to the norm of tb in H2[0, l]. Therefore, there exists positive numbers 
Go and 6'1 such that (4.49) can be written as 

r 0 ~  

> (7o(1 - A # -  B#') (T-  To)[1101111,[o.,] + I1r (4.50) 

/ I tb(z,0) = 0(x,t)dg t=o = ~o (say), 0 < z < l, 

7 ( x , 0 ) = O ( z , 0 ) = 0 O = ~ l  (say), 0 < z < l ,  

Thus the system (4.48) is analogous to the system (~1.8) and so the inequalities in (4.35) 
can be applicable for tb(z, t). Since (0tb/Ot)(z,t) = 0(z, t), using the inequalities in 
(4.35) for the solution of the system (4.48), we have 

r , mh 

'1 >1_ - A#I+K- B#2(T- T~ [m (x,0))2+ zv~,~-2ta:,0)) dx. (4.49) 

By Poincare inequality (of. Aubin [1]), we have that the norm 
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Hence we have from (4.50), 

r aO 2 
CflY[llO~176 -~ [[0111~/-:~[~ -~ CI ~o [O(O,~)- .-~(0,~)] d~ 

_> Co(1 - A # -  B ~ ' ) ( T -  To)[I O ' ' , I o11 ,[o,,1 + 110111H-,to,,l] 

in virtue of (4.47). 

(4.51) 

4 . 6  E x a c t  C o n t r o l l a b i l i t y  R e s u l t  

In the literature, exact controllability of a system means: for a given time T > 0, 

to find a suitable control function which drives the whole system to a desired final state 

or rest at the time T. To study the exact controllability of the system (4.?) at some 

finite time T > 0, we require to select a control force Q(t) appropriately on [0, T] 

such that the system (4.7), would be driven to rest (the desired final state) at time 

t = T. Then the solution of the system (4.?) must satisfy 

y(z,T) = 0 and O--~Y~(x,T) = O. (4.52) 
O+ 

The result (4.52) for exact controllability of the system (4.7) follows from the The- 

orem: 

T h e o r e m  4.1. Let T > To and # < #o, then for every y0 E H2[0,/] and 

yl e L2[0, l], there is a control function Q(t) E L2[0, T] such that y(x, t), the solution 

of the system (4.7) satisfies (4.52). 

Proof .  The inequalities in (4.51), implies that for T > To and # < #o, (4.19) 

defines a norm of {8o, 01} which is equivalent to the norm on the Hilbert space F. 

We can conclude from the Lax-Milgram theorem (cf. Aubin [1]) in virtue of (4.17) and 

(4.19) that A is an isomorphism from F to F' .  Hence for given {yo, yt} E F ,  there 

exists {0o, Ol} E F such that 

A(00,0,} = + (4.53) 

Now if we take the control Q(0 in (4.3) of the original problem as proportional to 

[O(O,O-~(OO/Ot)(O,t)] say, Q(~)=,8o[O(O,~)-~(OO/Ot)(o,t)], where 0 ( z , t ) i s  the 

solution of (4.8) with {0o,01} as solution of (4,53), then from (4.16), we have that the 

function ~b(z,t), the ~lugsma of the system (4.15), satisfies r =Y0 and r = Yl. By 

the uniqueness theorem we thal ly conclude that 

~(z,t) = y(z,t) 0 < z <_ l, 0 < t < T, (4.54) 
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and the result (4.52) for exact controllability of the original system (4.7) then ensures 

from the system (4.15). 

4.7 Concluding Remarks 

From the obsevability of the adjoint system, it follows that the original system (4.7) 

with small /~ (0 < ~ </~0) is exactly controllable for T > To (cf. [19]). Thus we can 

reveal the time To as the estimated least time for exact control of the vibrations of the 

hybrid elastic panel. Equation (4.44) shows explicit dependence of To on p proving 

that small viscous damping has the effect of increasing this time over the purely elastic 

case. This can be rendered by the resistance on the propagation of control wave through 

the viscoelastic flexible panel. The method as well as the result are analogously valid 

for Euler-Bernoulli beam also; in that case the flexural rigidity E I  of the beam takes 

the place of D of the panel. 



C H A P T E R  5 

S P A C E - T I M E  G A L E R K I N  A P P R O X I M A T I O N  

F O R  E X A C T  C O N T R O L  OF 
F L E X U R A L  V I B R A T I O N S *  

5.1 I n t r o d u c t i o n  

The theoretical approach on the distributed parameter control problems for ex- 

act controllability of torsional vibrations as well as transverse vibrations of the flexible 

hybrid structure have been developed in the preceding Chapters. Distributed parame- 

ter control problems are highly involved, depending on the form of partial differential 

equations describing the states of the system. The applicable controls in general, m a y  

be distributed with time dependent or space variable dependent or may be dependent 

on both time and space variables and in addition, it may occur only on the boundary. 

One Computational technnique for one type of distributed parameter control problem 

may work well, but in general the same technique may not work for another type. Fur- 

thermore, if a numerical solution is sought, the success of a particular computational 

technique depends very much on the particular computational algorithm used, for the 

solution of the partial differential equations. Because of these complications, it is to the 

fact that there can be hardly a truely unified computational approach to distributed 

parameter control problems. The computation of the numercal solution of the partial 

differential equations is thus very demanding. In view of this, the purpose of this Chap- 

ter, is to give a comprehensive numerical technique to support the theory treated in the 

earlier Chapters. 

Among the various methods for solving the boundary value problem, a possible 

approach is to use finite defference approximation to the partial derivatives, although 

the accuracy of the method isolimited. Another approach from engineering point of 

view is associated with the eigen value problem in which first few modes of the shape 

functions are taken into consideration.  But  actually the number of modes are infinite 

and the number of m o d e s  that  should  be retained is not known a priori ; afterall the 

*The contents of this chapter have been ~ublished in the paper Ezaet Controllability of a Linear 
Bnler-Bernoulli Panel --Gorain and Bose, ' Journal of Sound and Vibration' Vol. 217, 637-652, (1998). 
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method is not less difficult. In contrast, a semi-analytic Galerkin's residual method 

(cf. Kantorovich and Krylov [34]) can be applied with respect to both space and time 

variables to the distributed parameter control system for approximate numerical solution 

with small computational effort. For solving boundary value problems, the Galerkin's 

method makes possible a simpler and direct set-up, and at the same time having wider 

application and dissemination than Ritz's method (cf. [34]), though both methods lead 

to one and the same approximate solution. However, Ritz's method is not applicable in 

the presesnce of internal dissipation of the system. 

5.2 Space-Time Galerkin Approximate Scheme 

Herein we would like to build up a framework on the basis of Galerkin's weighted 

residual technique [34] for the vibrating control problem of elastic system, particularly 

the control problem of flexural vibrations of hybrid elastic panel described in Chapter 

3, as there is a greater importance of transversely vibrating structures. Application of 

Galerkin's residual method with respect to space coordinate on initial-boundary value 

problem (3.8) in Chapter 3, leads to a set of ordinary differential equations and luther 

application of it with respect to time coordinate finally yields the set of matrix equations 

giving a closed form approximate numerical scheme of the vibrating control system (3.8). 

We proceed by constructing admissible approximate displacement function as well as 

approximate boundary control force that satisfy the final conditions (3.35) in Chapter 

3, as closely as possible. For this it is convenient to treat the above boundary value 

problem in the above two steps. 

In the first step, the approximate displacement for the system (3.8) is written as 

superposition of polynomial shape functions of the following type: 

p+l  

y ( z , Q  = ~ f , ( z ) r  0 <_ z <_ l, 0 < t < T, (5.1) 
i = l  

where each 
n + l  

i / z ~ j - I  f i -  L a ~ ' ~ )  ( i--  1,2,...,p + 1) (5.2) 
j = l  

is a polynomial in z / l  of degree n. The functions fl satisfy the homogeneous 

boundary conditions to (3.5)-(3.6) for i - I;2, ...,p, while fp-i-I satisfies the non- 

h o ~  boundary condition (3.4) corresponding to the system (3.8) in Chapter 

3. The r162 functions ~ ( t )  for i = 1,2, ...,p are to be determined for llnding~ 

the approximate solution of the system (3.8) by Galerkin technique, while ~bp+1(t) on 
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account of (3.4) is given by 

Cp+l(t) -P = +,xQ(O],  (5.3) 

where l 3 is a dimesionality constant. 

With the above remarks, substituting (5.1) into the governing flexural vibration 

equation in (3.8), the integral of the weighted residue (with weight fi) over [0, l] set 

equal to zero: 

'f,(z)(m2--~2t2 + D-~z 4 fj(z)r = 0, ( i =  1,2,... ,p), (5.4) 

yields the system of ordinary differential equation 

A~, + B~ + E ' ~ ' =  A[CQ(t) + DQ(t)]. (5.5) 

Applying the same weighted residual technique, the initial conditions (3.7) similarly 

lead to 
4~(0) = r and <~(0) = 4~ 1. (5.6) 

where dot represnts time derivative. Introducing the transformation 

�9 (t) = ~(~) + ~0 + t r  (5.7) 

the above relation (5.5) changes to 

A~' + B~I, + B(,I, ~ + t~1,1) + E'~," = A[C(~(t) + DQ(t)] (5.8) 

together with (5.6) reduces to homogeneous initial conditions 

tI,(0) = 0 and ~i,(0) = 0. (5.9) 

The entries of the square matrices A, B, E are produced as 

r n+l n+l i ~ n+l n+l ' 1)(s- 2)(8- 3)(8 4)] 
k ' -  1 k=l o=S j2'~p _ s = l  8 ; ~ ' k  " "  5 , 

B = [-1~_I[9"+I_ ,+I,=6~4a~,..(s - 1)(a s+k-5- 2)(s- 3)(a-4)] pxp 

md-1 

~_~18 + k -- lJpxp 

(5.1o) 
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and that  of the column vectors C, D, ~, ~,  (I ,~ (I)1 are as 

_ n + l  . + 1  ~ i  np+l 

c =  E ,~=1 ._1 s T k -  i ]px l '  

D "+I "+I is- l)(s - 2)(s- 3)(s -4) 
D - [  Z Za~ar 1 '  ].• k=l o=s s + k -  5 ' 

= r  = [r �9 = ~(t)  = [r 

= r  = 

(5.11) 

In the next step, we repeat the Galerkin's weighted residual method in the time 

domain for the system (5.8) with homogeneous initial conditions (5.9). As a tool, the 

approximation of ~( t )  is written as 

q ~  t ~ ~ k + l  
@(t) = ~_.,Xk[~) (5.12) 

k = l  

satisfying the boundary conditions (5.9), where each Xk (k = 1, 2, ..., q) is a p x 1 

column vector. The determination of each Xk (k = 1, 2, ..., q) yields the approximate 

solution @(t) of (5.12) and hence that of (~(t) from (5.7). 

Now as in the previous step, we proceed by substituting (5.12) into (5.8) and taking 

the the integral of the weighted residue with weight (t/T) (~+1) over [0, T] to obtain 

the matr ix equation 

q 

~-~M,kXk = -~,(B@ ~ - ~7,(B(~ 1) + Q;,  (r = 1,2, ..., q) (5.13) 
k = l  

where each M,~ (r = 1, 2, ..., q; k = 1, 2, ..., q) is a p x p square matrix and each 

Q~ (r = 1,2, ...,q) is a p x 1 column vector obtained explicitly as 

[ (k+l)__k . T B +  
M,k= tT(k+r+ l)A + k+r+3 

(k + 1)k(k - 1 ) ( k -  2)E],] 
TS(k + r - 1) 

( 5 . 1 4 )  

and 

Q:  Af0 T [CQ(t) + DQ(t)]"  t.,+* = dt  ( 5 . 1 5 )  

T T 2 
& - r + 2 '  ~/" r + 3 (5.16) 

To solve Xh from (5.13), we have to invert the matrix M = [M,k]. Let us suppose that 

M is non-singular and ~F = [F~,] the inverse of M,  where each F ~  (k - 1,2,. . . ,q; 

r - 1,2, . . . ,q) is a p x p square matrix, then from (5.13) we have the scheme 
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q q q 

Xk = - ~ ' ~ ' ~ , F ~ B r  ~  ~'~/bFk, Br  I + ~-~Fk, Q:,  (k = 1, 2, ..., q). (5.17) 
r = l  r = l  r = l  

To obtain control force Q(t), we have to first solve the adjoint system (3.9) in 

Chapter 3, by similar Galerkin resudual technique. As in the precefding steps, invoking 

the same there will be matr ix equation similar to (5.13) for the the adjoint system (3.9) 

and eventually it conducts the scheme 

q q 

Yk = -~--~,Fk,  BO ~  ~1?,Fk, BO1, (k = 1,2,. . . ,q) (5.18) 

Again plugging this Q(t) in (5.15), we have 

= K,O + K,O , Q ;  0 0 1 1 

where the explicit form of the square matrices 

by 

(r -- 1, 2, ..., q) 

K ~ and K~ (r-" 1,2,...q) 

(5.23) 

are given 

r = l  r = l  

as Q(t) is absent there. The vectors O ~ = [01(0)]pxl, O 1 = [0i(0)]pxl and Yk 

(k = 1,2,. . . ,q) in (5.18) are the corresponding vectors to r r in the form (5.6) 

and Xk (k - 1, 2, ..., q) in (5.12) respectively for the adjoint sys tem (3.9). The above 

relation (5.18) can be rewritten as 

Yk = L~ ~ + r,~O 1, (k = 1,2,  . . . ,q) (5.19) 

where L ~ and L~ (k = 1, 2, ..., q) are p x p square marices. To this point, knowing 

the vectors O ~ and 01, each vector Yh (k = 1,2,.. . ,q) can be computed from the 

relation (5.19). 

On the other hand, as in the theory the control force Q(t) is followed finally by 

the expression 

Q(t) = ~oe(O,t), (5.20) 

with the help of (5.1), (5.2), (5.7) and (5.12), it can be written as 

QCt) = ~ o ~ a ~ s , ( t )  = &IooCt)  = ~o IoYk + I o 0  ~ + tloO 1 , (5.21) 
i=1 " k = l  

where the vector O(t) is the corresponding vector of r  in (5.7) for the adjoint 

system (3.9) and Io = [a~]lxp is a row vector. Utilizing the relation (5.19), the control 

force Q(t) can be reduced in terms of O ~ and 01, as 

Q(t) /30 (ioLOO 0 + ioL~01 ) k+l = + Io0 ~ + tIo01 (5.22) 
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" o A/~o['~'( k ( k + l ) l ) C I o +  
K,  = [~=__lkT(r + k + 

1 [~;.,( k(k+ 1 ) l )C io  + 

r+k+3 

r + k + 3 r - - ~  DI~ 

(5.24) 

Now we substitute Q7 from (5.23) into (5.17), which clearly yields the p • p matrices 

G ~ G~, H ~ H~ for each k = 1, 2, ..., q such that 

x ,  = G ~ 1 6 2  ~ + 1 + H ~  ~ + 1. (5.25) 

In this stage, we are now concerned on the time backward system (3.13), in Chapter 

3. On the applicaton of similar Galerkin's residual technique with weight fi over the 

interval [0,1] to final conditions r T) = 0, (Or T) = 0, yields 

A*(I)(T) = C* [aI0~(T) + AQ(T)] 

A ' ~ ( T )  = C* [aIo~'(T) + A(~(T)] (5.26) 

in view of (5.1)-(5.3), where A* is a p x p square matrix corresponds to A in (5.10) 

without the second term and the factor m. Similarly C* is a p x 1 column vector 

corresponds to C in (5.11) without the the factor m. With the help of the relations 

(5.7), (5.12), and (5.21), we have from (5.26) 

~--~A*Xk + A*cI ,~ + TA*r  I = C* -~--i~-~k(k + 1)IoXk + A/~o IoYk + IoO ~ + TIoO ~ 
k = l  L ~  k = l  k = l  

~Y~(k+I)A*X~+A*O ~ = C* ~-~Y'~(k-1)k(k+l)IoX~+IBo(~ (k+l )~Y~+IoO ~ 
k = l  L - L  k = 2  _ 

which on the use of (5.19) and (5.25) ult imately leads to the matrix equations of the 
form 

PO ~ + QO 1 = R ~  ~ + S ~  1 

UO ~  1 = W ~  ~ + Z~ 1 

where the e~plicit form of all p x p square matrices P ,  Q, R,  S, U, V, w ,  z are as 
follows 
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q q q 

V = ~-~A*H ~ - ~C*Io~-~k(k  + 1)H ~ - )~oC*Io~-~L ~ - )~/~oC*Io 
k = l  k = l  k = l  

q ~ . q 

Q = ~[~A'H~- ~-iC Io~'~k(k + 1)H~ 
k = l  k = l  

- ~oC*Io~-']L~ - ~f~oTC*Io 
k = l  

O~ . q q 
R = - ~ C  Io~"]k(k + 1)G ~ - ~ A * G  ~ - A* 

k = l  k = l  

O/ . q q 
S = -~-5C Io~-~k(k + 1)G~ - ~-~A*G~ - TA" 

k = l  k = l  

U = ~ ( k + l ) A * H ~  ~ - ~ ( k + l ) L  ~ 
= k = l  = 

(5.28) 

1 q a__ q q 
V = ~ (k + 1)A*H~ - T a C * I o ~ ( k -  1)kCk + 1 ) H ~ -  T J o L (  + 1)L~ - )~f~oC'Io 

= k = l  k = l  

a C .  q lk.~l W = ~-5 Io~~'~(k - 1)k(k + 1)G ~ - ~ (k + 1)A*G ~ 
k----.1 = 

a . q 1 q 
Z = ~-~C I~ -- 1)k(k + 1)G~ - ~k~a(k= + 1)A*G I - A* 

Now we can solve the vectors O ~ and 01 from (5.27) with the help of the (5.6) 

following given initial conditions (3.7) of the flexural vibration problem (3.8) in Chapter 

3. After knowing the vectors O ~ and O 1, the control force Q(t) at t ime $ can 

be obtained approximately from (5.22) and the vecor Q:  (r = 1,2,.. . ,q) from (5.23). 

Hence the vector Xk (k = 1, 2, .., q) can be computed in view of (5.17) which at once 

yields the vector @(t) from (5.12) and then the vector (I)(t) at time t by the relation 

(5.7). Hence finally, we can compute the approximate shape function in virtue of (5.1). 

Since the scheme is direct and usually low values of p and q are needed, computation 
proceeds very fast. 

5.3 Approx imate  Numerical  Result 

In practical procedure, we may assume that y0(z) and yl(z)  are approximated 

by suitable polynomials (by measurement at suitable discrete points along the length of 

the panel) ~atisfying the corresponding homogeneous boundary conditions (3.5)-(3.6). 
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The functions thus become candidates for f~ 

f~(~) = ~o(~), 

so that  

r = 1 and r = 0, 

~,(o)=1 and ~,(0)=0, 

and we can take 

f~(~) = y~(~) (5.29) 

(i = 2, 3,. . . ,p), (5.30) 

(i = 1,3,4, . . . ,p) ,  (5.31) 

which is a simple monotonic 

y -- 0 is approached. 

Yl(Z) = 0, (5.34) 

14  z s x 6 1 z 4 z 5 
~ + ~ - J '  

the first we take 

1 ~2 Z 4 6 7  Z s :~6 53  Z z 

y0(~) = 2~0 + ~ - 15~ + ~ ~ 27~ + =i F' 

in which yo(z) has a wavy shape and in the second, we take 

1 z 2 z 4 
(5.35) 

where a monotonic velocity is imparted with a small monotonic displacement. Applying 

the above computational scheme with p = 2, q = 4 and p = 3, q = 3 respectively it 

is observed that  the Galerkin approximation yields increasingly bet ter  results for T 

higher than  15.26. The above results for the dynamic deflection and the control force 

for the first example with T = 20 sec. are presented in the Figures 5.1 and 5.2, while 

those for the second example with T = 30 sec. are presented in Figures 5.3 and 5.4 

In addition to these we can take another function f3(z) 

function, since with increasing time the equilibrium position 

Thus we can take 
~2 1 x 4 1 ~5 

f3(z) - 12 2 14 § 5 l -~'" (5.32) 

The last function f4(~) (with p = 3) is similarly taken as 

I x 2 I x s 1 x 4 
f4(x) = - ~  l- ~- + 6 13 24 14 (5.33) 

satisfying the non-homogeneous boundary condition (3.4). 

The model parameters for m,merical computation for the control problem are cho- 

sen as follows (in MKS units): 

Length of the panel l = 3.6 meter, 

Mass per unit length of the panel m = 5.9 ki logram/meter ,  

Poisson ratio ~, = 0.33, Rigidity D = 6.9 kilogram x meter 3/sec ~, 

Mass of the hub 1Tt h - -  12.2 kg. ~0 = 1. 

For this panel To = 15.26 sec. We consider two examples of initial conditions. In 
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respectively. It has been observed that velocities are lower by an order of magnitude. 

Finally, we remark that for very accurate results even for low values of T (higher than 

To) we may need a full, space-time Galerkin finite element technique. Such a technique 

will however need greater computational time. 

5.4 Concluding Remarks 

Here we have constructed a closed form numercal scheme for the problem of exact 

controllability of tranverse vibrations of a flexible panel attached to a rigid hub at 

one end and totally free at the other to  obtain an approximate closed form solution 

together with approximate boundary control. The treatement of the problem is based on 

Galerkin's residual technique. The scheme works fast as illustrated in the two examples. 

In practical application since the theory is exact, the parameters involved should be 

known as accurately as possible. The initial displacement and velocity y0(x) and 

yl(x) when sufficiently smooth need be measured at a limited number of points along 

the length of the panel and approximated by polynomial functions. 

Of the other parameters required in the theory D may be determined from some 

dynamical test, while m, m h  and l can be ascertained quite accurately. Nevertheless, 

approximations and uncertainties in measurements do pose the question of robustness 

(cf. [18]) of the exact theory and may be addresse~] to theoretically. We may however 

note that dissipation of energy takes place in actual systems with significant material 

damping in the panel ,  and frictional and other losses in the hub rendering the sys- 

tem asymptotically stable. The level of performances should thus be good under these 

cercumstances. In the earlier literature (cf. [22,23,24]) using modal decomposition fol- 

lowed by finite state representation, we may note that the uncertainities are introduced 

as Ganssian white noise followed by Kalman filtering. 
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B O U N D A R Y  S T A B I L I Z A T I O N  OF T O R S I O N A L  
V I B R A T I O N S  OF A F L E X I B L E  P A N E L  

6.1 Introduct ion  and Mathemat ica l  Formulat ion 

Research on the topic of boundary stabilization for distributed parameter systems 

governed by wave equation have been developing with great importance during the last 

few decades. We shall be dealing in this Chapter, boundary stability for the solution 

of the hybrid dynamical model of torsional vibrations of the uniform rectangular panel 

as formulated in Chapter 1. In the mathematical literature, stabilization (strongly) of 

a system means the convergence of the solution of the system to zero as time tends 

to infinity. If corresponding to all initial data with finite initial energy, the solution of 

the system converges uniformly with introduction of a boundary stabilizer or damping 

device, it is called a uniform boundary stable system. 

Though the study of stabilization for the solution of wave equation started in the 

early sixties (cL Lax et al. [50], Morawetz [63]), Chen [6] first obtained the explicit 

form of exponential energy decay rate (uniform boundary stabilization) for the same 

in a ~tar-complemented strongly afar-shaped domain (SCSSSD) in R '~. The results of 

uniform stabilization by means of exponential energy decay estimate have been later 

improved by Lagnese [43], Komornik [37] by constructing speacial type of feedback 

boundary dampings and obtained somewhat faster energy decay rates. The stabilization 

of the solution of hybrid vibrating system has been described throughly by Littman and 

Markus [55] and Rao [72,73], with a boundary feedback applied at the end with a lumped 

mass. All the above investigations haveshown the stability of wave equation or Euler- 

Bernoulli beam equation, clamped at one end and feedback damping or control force 

applied on the other end. But for the class of systems such as solar cell array, robot 

with flexible links or spacecraft with flexible appendages, it is practically undesirable 

or the most difficult task to apply boundary damping or stabilizer on at the free end of 

the structure where as to apply it on the other end is much easier in order to obtain a 

good performance of the overall system. 

Thus to study boundary stabilization of the solution of torsional vibrations of the 
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uniform rectangular panel as describe in Chapter 1 by the mathematical problem (1.7), 

we need a boundary stabilizer such that the solution of the system corresponding to 

initial data with finite energy decays exponentially in the energy space as time t -4 +cr 

For this, we now select a viscous boundary damping force (in fact, a passive damping 

force) applicable on the rigid hub of the panel, that means, Q(t) in (1.4) or in the 

system (1.7) is taken as proportional to r , say, Q(t) = br where b is 

a positive constant. That means, we select a boundary velocity feedback damping to 

describe the asymptotic behavior of the the system (1.7). Hence to study the boundary 

stabilization of the torsional vibration problem, the following mathematical system of 

equations is to be concerned. 

(~ , t )  = , ' r  

r o) = r 6(~,o) = r  

r = a r ( o , t )  + ,~b;b(O,t) and r = O, 

O<z<l ,  t>o, 

O<z<l ,  

t>O, 

(6.1) 

where the parameters c, a, ~ remain same as considered in Chapter 1, and prime and 

dot denote differentiations with respect to z and t respectively. 

6.2 Energy of  the System 

Associated with each solution of (6.1), the total energy at time t is defined by 

E ( t )  = 

Differentiating (6.2) with respect to t and using the first equation of (6.1), we have 

(0,t). 

Integrating by parts and applying the boundary conditions of (6.1), the above yields 

#,(t) =-c~,Xbr <_ O. (6.3) 

The negativity of the right hand side of (6.3) shows that the energy E(t) of the system 

(6.1) is noninereasing with time and the system is thus energy dissipating due to viscous 

boundary damping at the hub end. Evidently, it follows from (6.3) that 

E(t) < E(0), for t > 0. (6.4) 
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6.3 Uniform Boundary Stability Result 

As the energy of the system decays with time, so naturally the question arises on 

the conditions for which it decays uniformly. Owing to this fact, the main interest in 

this Chapter is to obtain explicitly the uniform exponential energy decay estimate for 

the solution of the vibrating system (6.1), that means we want to establish the result 

of the form 

E(t) <_ Me-~tE(O), t >_ 0 (6.5) 

for some reals fi > 0 and M > 1. 

The result (6.5), for the system (6.1) is ensured from the Theorem: 

T heo rem 6.1. Let r t) is a solution of (6.1) corresponding to initial conditions 

r E H2[0,/] and r E HI[0,/]. Then the energy of the system (6.1) defined by (6.2) 

decays exponentially with time, i.e., E(t) satisfies (6.5) for some reals fl > 0 and 

M>_I. 

Before proving Theorem 6.1, we fi#st consider the followings. 

Lemma 6.1. If r t) is a solution of (6.1) then the function p(t) defind by 

1 I .~ a--2 
= "2 fo (~ + c'~"~)dz + 2#~ (O,t) (6.6) p(t) 

is nonincreasing with time. 

Proof.  Differentiating (6.6) with respect to t, we have 

= + + 

Introducing the first equation of (6.1) and then integrating by parts, the above leads to 

Applying the boundary conditions of (6.1), we get 
.*2 

~(t) - -Ab~b CO, Z) < O. (6.7) 

From the negativity of the right hand side of (6.7),othe Lemma 6.1 follows at once. 

then 

Lemma 6.2. If we define a function ~ ( t )  by 

JO ! p o ( t )  = ( z  - l ) ~ 'dz  

l(t + ~ a  + 2r + c'a'l~'(O,t) - E(t). #o( 0 <_ 

(6.8) 

(6.9) 
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Proof .  Differentiating (6.8) with respect to t and using the governing equation 

of (6.1), we have 

~o(,): ]o'(~- ~)(~' § ~'~"~')d~ 
Integrating by parts, the above becomes 

1 ' 1 fo'(~p~ + c2r 

Applying the boundary conditions of (6.1), we thus obtain 

rio(t) = 11(r c~r + c~-~-ar E(t) (6.10) 

by the energy equation (6.2). Since r = a r (0,t) + Abr we can write 

r t) '"= A'b'$~(O,t)]. (6.11) = ( .  (o, , )+ ~b~.,o,,,~' __ 2[~ (o, , )+ 

Now plugging (6.11) into (6.10), the Lemma 6.2 follows immediately. 

At this stage we are ready to prove the main Theorem. 

P r o o f  of  T h e o r e m .  We now construct a function E~(t) by 

c 2or 21 . . ~, I E,(t) : [E(t)+ 2,8 (po(t)+ -~-p(t,))Jc "t, fort_> 0, (6.12) 

where fl > 0 is a fixed constant defined later. We note that 

Since E(t) 

I '  I I '(~2 I E(t)" 

and p(t) are nonincreasing with time, therefore for every 

and Cx E HI[0,/] we have E(t) g E(0) < oo and 

exists a positive constant 5 such that 

p(t) <_ p(O) < oo. 

(6.13) 

r ~ H~[0, l] 
Hence there 

We can assert that /i is bounded above for t > 0. This follows from the fact that by 

final value theorem of Laplace transform, for infinitely large values of t, p(t) decays 

faster than E(t),  according to the expressions for ~(t) and E(t) in (6.7)and (6.3) 

respectively. 

Inserting the relations (6.13) and (6.14) into (6.12), we have 

6c~-Ea'l]lE(t). (6.15) .,.Cl _< .,.[1 §  § , ,  

p(t) _< ~E(t). (6.14) 



Boundary Stabilization of  Torsional Vibrations... 71 

Now we differentiate (6.12) with respect to t to obtain 

caa2l . . . \ ]  &(0 = e~' [E(0 + 2~(~0(0 + -T~-pr + ~E~(0. (6.16) 

Introducing the right inequality in (6.15), the relation (6.16) can be written as 

~c2a21~ c'a'l . ., ( 1 2 f l ( !  + -~ , /  

Applying Lemma 6.2 and the relations (6.3), (6.7), the above yields 

rr  1 r , ,.1 _ 
~c2 a2 ~ 

- �9 E,e( ' )  ~ e ~ ' L t ~ ( l § 2 4 7 1 6 2 2 4 7 2 4 7  �9 

Now we choose the constant ~ > 0 as 

{ c'Ab 1 ).} (6.19) 
= man l § c2a + 2c2)~b21 ' 21(1/c § ~c2a~/)~b " 

Then we have from (6.18), 

/~( t )  < 0, for t > 0 (6.20) 

and at the same time from (6.15), 

(~ ~ic'a', , . e~t2Zl~c2a2E(t) < E~(t) < e~ + 2~l + - - - ~ ) ] E ( t ) ,  for t > 0. 
,~b - - 

Integrating over 0 to t, it follows from (6.20), 

E~(t) < E~(0), for t > O. 

With the help of the inequalities in (6.21), it follows finally from (6.22) that 

E(t)  <_ Me-~tE(O), for t > 0 

where, 

M =  

Which completes the proof. 

1 + 2~1(1/c + $c2a2/)~b) > 1. 
2~l~c2a2 / )~b 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

6.4 C o n c l u d i n g  Remarks  

From (6.23) it follows that the uniform exponential energy decay rate ~ of vibra- 

tions will be maximum for largest admissible vahm of ~ given by the smaller value 

between the two in the relation (6.19). In this context, it should be remarked from 

(6.19) that the energy decay rate ~ is raring inversely with the length l of the panel. 

More precisely, vibrations of longer panel w~l take much more time to stabilize, which 

is highly singnificant for our problem because one end of the panel is totally free. 
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B O U N D A R Y  S T A B I L I Z A T I O N  OF T O R S I O N A L  

V I B R A T I O N S  O F  A N  I N T E R N A L L Y  

D A M P E D  F L E X I B L E  P A N E L f  

7.1 I n t r o d u c t i o n  a n d  M a t h e m a t i c a l  F o r m u l a t i o n  

In this Chapter, we study the uniform boundary stability for the solution of inter- 

nally damped torsional vibrations of the hybrid system, consisting of a uniform rect- 

angular panel with a rigid hub, at one end as described by system (2.3) in Chapter 

2. In other words, we are concerned about the uniform stability of the problem of the 

previous Chapter incorporating internally damping of the material of the panel. In the 

literature, boundary stabilization deals with the existence of a boundary stabilizer such 

that each solution corresponding to initial data with finite energy decays exponentially 

in the energy space as t --, +oo. To describe the asymptotic behavior of the system 

(2.3) in Chapter 2, we apply boundary control (stabilizer) Q(t) in the system (2.3) 

as b~(0, t), where b > 0 is a finite real. In mathematical literature, this stabilizer is 

nothing but the viscous boundary damping force on the rigid hub of the panel. 

Hence for the boundary stability of the problem of internally damped torsional 

vibrations is mathematically concerned by the following system. 

= + O_<z_<l ,  t_>O, 

qb'(O,t) = a ~ (O,t) + Ab~(O,t) and ~b'(l,t) = O, t >_ O. 

Thus we are concerned about the asymptotic behavior in the presence of both internal 

material damping of the panel as well as boundary viscous damping on the rigid hub. 

The parameters c, a,  A are given by in Chapter 1. 

tThe contents of this chapter have been published.m the pap~ Er~-t Controllability and Boundary 
S ~ ~  of Torsional Vibration~ of an ln~ernally Damped ~ @ace Structure ---Gorain and 
Bose, 'Join-rod of Optimization Theory and Applications' VoL 99: 423-442, (1998). 
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7.2 Energy of the System 

For each solution of (7.1), the total energy at time t is defined by 

X '(~2 e2r ~_ + E(t) = ~ fo + + (c2a PXb)r (7.2) 

Differentiating (7.2) with respect to t and using the first equation of (7.1), we have 

#Ab)r t)r O, t). 

Integrating by parts and applying the boundary conditions of (7.1), yields 

/~(t) = -c2Ab62(0,/) - #ar "$" (0,t) - # f0' ~'2dx" (7.3) 

The integral term on the fight hand side of (7.3) shows that some energy is dissipating 

throughout the system due to incorporation of material damping of the panel. Similarly 

the first term on the fight hand side of (7.3) shows energy dissipation due to boundary 

damping on the rigid hub of the panel. We now estimate r "r (0,t) as 

1 2c2)~b "2 Iza .~.2(n 

I f  # is sufficiently small compared to ,k and b, then it follows from (7.3) that 

/~(t) < 0, and E(t) is nonincreasing with time, i.e., 

E(t) < E(O), t >_ O. (7.5) 

As our main interest in this section is to show explicitly the exponential energy 

decay rate of vibrations, that means we want to establish 

E(t) < Me-~tE(O), t >_ 0 (7.6) 

for some positive /~ and some real M > 1, so the question is under what conditions 

the energy E(t) satisfies (7.6). 

7 .3  U n i f o r m  B o u n d a r y  S t a b i l i t y  R e s u l t  

Chen [6,9], Komornik [37] and Lagnese [42,43] have shown that if a bounded domain 

~l in It" has certain geometries, then the energy for the solution of second order wave 

equation with a viscous boundary feedback damping will decay uniformly exponentially. 

Chen [9] has also obtained faster energy decay rate of waves considering distributed 

viscous damping and boundary damping. 
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Exponential energy decay of vibrations for the problem governed by the set of 

equations (7.1) follows from the theorem: 

T h e o r e m  7.1. Let r t) is a solution of (7.1) corresponding to initial conditions 

r E H~[0,1] and r E HI[0,1] with # > 0 small enough. Then the energy of 

the system (7.1) defined by (7.2) decays exponentially as t --, +oo, i.e., there exists 

constants  M _> 1 and ~ > 0 such that E(t) satisfies (7.6). 

Before proving Theorem 7.1, we first consider the following Lemma. 

L e m m a  7.1. If r t) is a solution of (7.1) then the function p(t) defind by 

1 ~o' (,~,~ a. .~  pit) : ~ + c~r + ~r  C0,t) (7.7) 

is nonincreasing with time. 

Proof .  Differentiating (7.7) with respect to t and introducing the first equation 
of (7.1) we have 

,~(o:/o' [~,cc.r + ,~..,,,~,,],~ + o;~co, osco,,:,. 
Integrating by parts we obtain 

�9 �9 

,~co- [c.~,e + #~*"]o + o;~co,,l,~co, o - .  J:o"~"'d~ 
Applying the boundary conditions of (7.1) we get 

�9 �9 2 L l ~(t) = -~br ( 0 , t ) - ~  ~'~d~ < o. (7.8) 

Hence the Lemma follows. 

P r o o f  of  T h e o r e m .  We now construct a function E~(t) by 

E~Ct) = ~(t) + ~,~pCt) + ~ + ~r t > 0, (7.0) 

where /~ > 0 is a small fixed number satisfying 

Z<~ ~. (7.~0) 

We note that 

a, nd 

~ot~"dz <_ ~E(t). (7.12) 
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Using the results (7.11) and (7.12), we have from (7.0) 

e~t(1 - 2f~!)E(t)~_ E~(t)~_ [(1 + 2f~(! + c-~))E(t)+ ~p( t ) ] e  ~'. (7.13) 

Now differentiating (7.9) with respect to t and utilizing (7.1), we obtain after a 
simple calculation 

l 0 -r 

(7.14) 

Integrating by parts and introducing (7.2), we have from the above 

(7.15) 

Applying the fight inequality in (7.13), we obtain from (7.15) 

Here we note that 

+~(2f~l 
C 

2#f~ 1)E(t) + I.t~!p(t) z . + - 7  - - 2#8 9/o xr162 (7.16) 

Since P(0 is nonincreasing as in Lemma 7.1, therefore we have p(t) _< p(0). Hence for 

every r E H2[0, l] and ~bl E HI[0, l], there exists a positive constant ~ independent 
of /z such that 

PCt) <_ $ECt). (7.18) 

This follows from the fact that for infinitely large values of t, the leading terms 
of ~b(t) and /~(t) in (7.8)and (7.3)for small g are respectively -~br and 
-c2~br Hence for t --, oo, p(t) decays faster than E(0  by the final value 
theorem of Laplace transform. Hence the assertion. 

Introducing (7:10), (7.17) and (7.18) we therefore obtain from (7.16), 

(7.19) 
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If we choose g so small such that 

/.t( " 1 315) 
c-~/~ 4 - d  4- c , '  <1 ,  

we have then from (7.19) 

E~(t) < e~t[z~ [lr ) 4- (c2a 4- gAb)~ ' (0 , t ) ] -  gar "~" CO, t) 

by the use of (7.3) and (7.8). 

Since 
I o! 

6(l, t) = d(0,t) + ]o r d~, 
therefore applying the inequalities 

and 

( a 4- b) 2 ~ 2(a 2 4- b 2) 

fo' 
it can be easily established that 

Introducing (7.24) into (7.21), we obtain 

' ~' ,Ab)$'(o,t) - , ~ $ ( 0 , t )  r (o,t) < e ~ [ ~ ( 2 1 + c ' ~ +  "'" 

IAb "2 c'Abr - ~ T r  Co, t ) -  

(7.20) 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

is taken small enough, so the expression in the bracket on the right hand side 

(7.zs) 

(7.27) 

(7.26) 

E~Ct) < E~(0), t > 0. 

On the other hand using the inequalities (7.10) and (7.20), we have 

1-2zt >_ ,(~_~t ,+~ 316) 
C C s 

Thus we have 

As g 

of (7.25) can be made nonpositive for 

depends on the viscous boundary damping parameter 
that 

& ( 0  < 0, t > 0. 

# < #o- It should be remarked that this #o 

b. It then follows from (7.25) 
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Therefore the inequalities in (7.13) can be written as 

~c-~12 § E(t) <_ E~Ct) <_ era[1 +/~(c2~ + ~ + ECt) 

by (7.10) and (7.18). With the help of (7.29) it follows finally from (7.27) that 

E(t) <_ Me-~'E(O), t >_ 0 

where, 

Hence the Theorem. 

(7.29) 

(7.30) 

I +,(,lel" + + 
M = (7.31) ,(,lel' + 31~lc) 

7.4 Concluding Remarks 

It follows from (7.10) that uniform exPonential energy decay rate ~ for the solution 

of internally damped torsional vibration problem governed by (7.1) explicitly depends 

on the internal damping parameter #. As # > 0 is taken small satisfying the 

relations (7.20) and # <_ #0, the exponential energy decay rate will be maximum for 

the selection of largest admissible value of #. Again /z0 depends on the boundary 

damping parameter b, it is concluded that the uniform exponential energy rate /3 
implicitly depends on b also. 
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B O U N D A R Y  S T A B I L I Z A T I O N  O F  F L E X U R A L  
V I B R A T I O N S  O F  A F L E X I B L E  P A N E L  t 

8.1 I n t r o d u c t i o n  and M a t h e m a t i c a l  Formulat ion  

In the preceding two Chapters, we have discussed uniform boundary stabilization 

of undamped and internally damped torsional vibrations of a hybrid flexible space struc- 

ture with a damping device at one end. We study in this Chapter, the uniform boundary 

stabilization of flexural vibrations of the same hybrid structure consisting of an Euler- 

Bernoulli panel with a rigid hub hoisted at one end as described in Chapter 3. The 

objective here, is to study the stability of the overall system by means of a uniform ex- 

ponential energy decay estimate for the solution of the system under suitable stabilizing 

force Q(t) applied only at the rigid hub. 

To study uniform boundary stabilization, we assume that Q(t) in (3.3) of Chapter 

3, is proportional to (Oy/Ot)(O, t) say, Q(t) = b(Oy/Ot)(O, t) i.e., a viscous boundary 

damping stabilizer is present at the hub end, the constant b > 0 being the viscous 

damping parameter. Therefore, the mathematical problem to be persued for uniform 

boundary stabilization of the hybrid structure as described in Chapter 3, is governed 

by the following boundary value problem 

02y . . ~ y  
m-b-F(~,t} + D - ~ , { ~ , t )  = o, 

o3V , o ' o'y ~ --~3, t) + a -~(O, t )  + Ab (O,t) = O, (O,t) = O, t > O, 

~ = o, o~ =o, t_> o, 

y(z,O) = yo(z) and ~'~Yt (x ,O)= yl(x), 0 <_ a: < l, 

o<_z<t,t>_o, 

(8.1) 

where the parameters m, D, a, A take the same values as those of in Chapter 3. 

tThe contents of this chapter have been communicated in the form a paper B o ~  S ~ t ~ o ~  of 
a Hybrid Euler-Bernoulli Beam ---Gorain and Bose, 'Proceedings Indian Academy of Sciences (Mathe- 
n~tical Sciences)'. ~ 
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8.2 Energy of the System 

Associated with each solution of (8.1), the total energy at time t is defined by the 

functional 
~02y~ 2] 1 Oy 2 

Now differentiating (8.2) with respect to t and replacing m(O2y/Ot 2) by -D(O4y/Ox 4) , 
we obtain 

, o ( o , y  o'y 0yo3y  0y o'y t 
dEdt = D fo Ox ~.OxOt Ox' -~-O-x-gx 3 jdx + mh-~(O, t)--~ff(O, ). 

Applying the boundary conditions of (8.1), we get 

dEdt -- --DLa-O-~ (O't) [ 02Y Jr ~b~(O,~)]--~~(O,~)-~-mh'-g-i(O,t)---gi-~(O,t Oy 02y 

: 0 ,  

for all t > 0, as a = mh/D, A = 1/D defined in Chapter 3. This implies 

(8.3) 

(8.4) 

E(t) <_ E(O) for all t > O. (8.5) 

Hence the energy E(t) is nonincreasing with time and the system (8.1) is energy 

dissipating due to the incorporation of boundary stabilizer. As the energy decays, our 

main interest is to obtain explicitly the uniform exponential energy decay estimate for 
the solution of (8.1). 

The boundary stabilization for Euler-Bernoulli beam equation has been studied by 

Chen et al. [13], Littman and Markus [55], Krall [39], Chen and Zhou [15], Morgiil [66] 

and Rao [73]. All their investigations have shown the controllability and stabilization 

of Euler-Bernoulli beam equation, clamped at one end and free at the other, except for 

feedback damping or control force (viscous damping) on the other end. Littman and 

Markus [55], and Chen and Zhou [15] in particular, have however shown by calculating 

the eigenvalues of certain hybrid system that uniform stabilization is not possible be- 

cause of the inclusion of infinitely large wave number k, during the passage of a wave 

along the length of the beam. Rao [73] concludes the same by semigroup theory. 

The difficulty in proving uniform stability, appears to stem from not imposing any 

restriction that the beam remains approximately straight during vibration (see Rayleigh 

[76], Clough and Penzien [17]). Motivated by this consideration, the rate of change in 

both z and t from the equilibrium position of the displacement y(z,t) remains 

small, that is to say, 1(82y/OzSt)(z,t)l remains small. The implication is ~hat the 

time rate of variation of small slope remains small and also the gradient of the velocity 
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along the length of the panel remains small. Therefore considering the totality along 

the length of the panel, we impose the restriction that fJ(O2y/OxOt)2dz remains small. 

If we compare this quantity with a similar one, f~(O2y/Ox~)~dx which is actually 2/D 

times the potential energy of bending of the panel and is thus finite, then accordingly the 

restriction on vibrations satisfying the first equation of (8.1), is assumed to be governed 

by 
l ~ 02y ,2 D ' ,02y,2 

for appropriate Yo(Z) and yx(x). Here D/ml  2 is a dimensionality constant. For our 

purpose, we have assumed (8.6) to hold for time t > to, where to is finite but may be 
as large as we please. 

8 . 3  U n i f o r m  B o u n d a r y  S t a b i l i t y  R e s u l t  

T h e o r e m  8.1. Let y(x,t)  

initial conditions {Y0, Yz} for which (8;6) holds and E(0) < oo. 
the relation 

E(t) < Me-t~tE(O), t > 0 

for some reals ~ > 0 and M > 1. 

Proof .  Proceeding as in Komornik [90], when 0 _< t _ t0, 

large enough) is a finite real such that (8.6) holds, we have 

be a solution of the system (8.1) corresponding to the 

Then E(t) satisfies 

(8.7) 

where to (may be 

e 1-qt~ > I. 

Evidently, we can write from (8.5) that 

E(t) < B(o) _< 

where Mz = e and /~1 = I/to. 

For the case t > to, the proof is as in the following: Let 

constant. We define the scalar-valued function E, as 

for all 0 < t < t0, (8.8) 

e > 0 be a fixed small 

for all t > to, where 

E, Ct) --- E(t) +  p(t) (8.9) 

ft  Oy ay_ 
p(t) = 1o (8.1o) 

Here the constructed functional E,(t) is different from the other forms used in Chapters 

6 and % In fact, it is to be mentioned that like earlier Chapters, slmjlar type of functional 
can also be adopted here to obtain the desired result, following by that approach. 
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Since (Oy/Oz)(O, t) = O, by Wirtinger's inequality (cf. Shisha, [80]), we have 

~01 ( ~ 2 d z  < 4/2 I /02y.2 
~o=,  - ~- ]o ~b-~z~) d=, 

and also it can be easily established as (7.24) that 

2 Oy 2 z ,  0 2 y  , 2  1 
( ~ ( / , t ) )  < 2[(~-~(0, t)) 4-1fo [~0- t )  dm]. (8.12) 

Now from (8.10) we can estimate p(t) as 

pit) _< 4 z ' , ~ [ ,  I II I ~  7r DOY 
T v  
212 ,//~-[l [ ( Oy ~ 2 7r 2 

-< + -< 

by (8.11) and the energy equation (8.2), where 

(8.11) 

#o = �9 (8.14) 71" 
Thus from (8.9), we find 

( 1 -  e#o)E(t) <_ E~(t) <_ (1 + e#o)E(t). 

We now proceed with the differentiation of (8.~i0) with respect to 
m(O2y/Ot 2) by -D(O4y/Ox 4) and then integrate to obtain 

dp fot / ~ 02y ._, 04y Oy,~. 
dt - 2 z ~m--~ OtOz - ~ Oz) az 

(8.15) 

t and replace 

fl a [ t'ay~2 (a2y~2] f l  aya3y 
= Jo x-~x[m~"~) + D~-ff~z2/ jdz + 2D Jo Oz Oz 3dz (8.16) 

Again integrating by parts and applying the boundary conditions of the system (8.1), 
the above becomes 

dp Oy 2 Oy 2 t , 0 2 y ,  2 
d---t = mh(~(O, t ) )  4- ml(-~i l ,  t)) -- 2D fo ~ - ~ )  dz - 2Eit ). (8.17) 

Inserting the inequality (8.12) into (8.17), we obtain 

Oy 2+2[m/2 t ( O2y ~ 2 _ t l O 2 y .  2 1 
dPdt _ < imh 4- 2ml)(-~(O,t)) r -  fo ~'-~-~' dz D fo [-~x 2) dzl - 2Eit ) (8.18) 

and by the use of (8.6), the above ultimately yields 

dPdt_ < im~ 4- 2m/) (-~(0,  t)) 2 -  2Eit 1. (8.19) 
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Again differentiating (8.9) with respect to t ,  and inserting (8.4) and (8.19), we obtain 

the differential inequality 

( co 2 dE, < -2eE( t )  - [b - eCmh + 2ml)] k Or' ' '1 " 
dt - 

( 8 . 2 0 )  

If we choose e < Co, where 

eo = min {bl(mh + 2ml), 1/2po}, (8.21) 

then from (8.20), it follows that for all t > to, 

dE~ 
d----~ + 2eE(t) < O, (8.22) 

and at the same time we have from (8.15) 

#oeE(t) ~ E,(t) <_ (1 + poe)E(t). (8.23) 

With the help of (8.23), the relation (8.22) yields 

dE, 
d---t- + f~2E,(t) <: 0, t > to (8.24) 

where, 

Now multiplying (8.24) by 

2c 
- - -  > o. ( 8 . 2 5 )  

1 +/~oe 

e At and integrating over to to t ,  we obtain 

E~(t) <_ e-m(~-~)E,(to) for t > to. ( 8 . 2 6 )  

Then finally, in virtue of (8.23) and (8.5), it follows from (8.26) that 

E(t) <_ 1 + ee_m(t_tO)E(to) <_ M2e_m~E(O) for t > to, (8.27) 
~oe 

where 
M2 _ ,I + #Oee~tO" (8.28) 

#oe 

From the relations (8.8) and (8.27), we can conclude the result (8.7) for some reals 

M = max{M1, M~} and ,~ = min{~1, ~/2}. 

8 .4  R e s t r i c t i o n s  o n  I n i t i a l  C o n d i t i o n s  

The uniform stabilit~ for the problem has been established in the previous section 

on the basis of restriction given by (8.6). From physical point of  view, actually, the 
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restriction (8.6)el iminates high wave numbers during vibration, after a time to. There- 

fore, when wave numbers are bounded for the condition (8.6) to hold in terms of initial 

conditions of the boundary value problem, we use separation of variables method for 

obtaining the formal result. 

The general modal solution of the governing equation of (8.1) by separation of 

variables is 

where 

oo 

vCx,t) = ~_,Cne-i"2k~ur (8.29) 
n=O 

Cn(z, kn) = sin knz + Cln cos knz + C2n sinh k,,z + C3n cosh k,~z (8.30) 

are the non-orthogonal collection of eigen functions satisfying the boundary value prob- 

lem (8.1), and a s ra the  'velocity of propagation'--is V/-ff/rnl 2. Without loss of generality, 

we can assume in (8.29) that the wave number k,, (n = 0,1, 2, ...) satisfies Re k~ > O. 

The boundary conditions of (8.1) yield the coefficients 

1 + cos knl cosh knl - sin knl sinh knl 
e l f  t = 

cos k,.,l sinh k,.,l + sin k,,l cosh k~,l 

C2n = -1 ,  

1 + cos k,.,l cosh knl + sin/e~l sinh k,,,l 
C 3 n  ~ 

cos k,.,l sinh k,.,l + sin k,.,l cosh knl 

(8.31) 

and the frequency equation is 

kn/(cos k,.,l sinh knl + sin k,.,l cosh k,.,l) + (aa4k213 + i)tba212)(1 + cos k,.,l cosh knl) = O. 

(8.32) 

If k~ = u,,+iv,, ,  then we can prove as in Krall [39], that v,, < 0. In view of governing 

differential equation (8.1), separation of variables leads to 

- knr = 0 (8.33) 

where r = 04r 4 and the boundary conditions leading to 

r  = O, : (aa4k412 + iAba2k l)r 
(8 .34 )  

r  = 0,  = 0. 

Multiplying (8.33) by the complex conjugate 5,, and then taking its conjugate, we 
find respectively 
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and 

r  - ~1r  = 0. 

Subtracting these two and integrating from 0 to l, we have 

- 4  1 l 

(k~ kn)fo 1r = fo (r162 - r 

Integrating by parts and applying the boundary conditions in (8.34), we obtain from 

above after a simplification 

(k~ - ~ )  Ir = a a ' F ( P  - P.)Ir - iAba21(k~ + ~)1r ~. (8.35) 

Now if we take k~ + k~ = 2u,, # 0, it follows immediately from (8.35) that 

1 Aba21[r 2 
Vn = - -  <0 .  

2 fo z Ir + aa4/21r 

(vn # 0, since otherwise r = 0 and then (8.33)-(8.34) yield r identical to zero). 

On the other hand, if we take, k~ + k~ = 0, then k~ = iv ,  is purely imaginary. In this 

case the boundary value problem becomes 

2 r  + v . r  = 0 

r  = 0, 

r  = 0, 

r = - ( ~ ' , ~ l  ~ + ~ba'vJ)r 

r  = 0, 

(8.36) 

l 2 l 

Thus we have v,, < 0 (v,, # 0, since otherwise the above leads to r identical to zero, 

which is impossible). Thus the solution (8.29) decays uniformly exl~onentially as t ---, oo, 
unless vn = I m  k~ ---, 0 as n ~ c~. 

Restrictions on the initial conditions Yo and Yl in terms of wave number/~,  for 

which inequality (8.6) holds and exponential decay of energy is possible according to 
t h e  t h e o r e m  8.1  a r e  given in the following proposition. 

and since the boundary value problem is real, considering the real solution r  of (8.36) 
we can write 

�9 2 2 r 1 6 2  + v.r = o. 

Integrating by parts from 0 to l and applying the boundary conditions in (8.36), we 
obtain from the above 
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P ropos i t i on .  Let the associated dimensionless wave numbers k,`l (n = 0,1,2, ...) 

satisfying the frequency equation (8.32) of the modal solution (8.29) and the initial 

conditions Y0(Z) and yl(x) be such that 

~r 2 sin2(a2unlt + 01,,) 
Ik~1212 < 4 sin2(a2u,,It + 82,`) for t > to (8.37) 

where t0 > 0 is a real (which may be large) and 81"`, 82,` are related to the initial 

conditions by equations (8.41) and (8.44); then the inequality (8.6) holds for t > t0. 

Proof .  Since the collection of eigen functions r (n = 0,1, 2, ...) in (8.30) are 

not orthogonal, the expansion (8,29) is not an orthogonal expansion. To obtain the 

coefficients C,` in terms of initial conditions in the simplest way, we need to make 

the eigen functions orthogonal. Let us consider the real orthonormal eigen functionw 

r (n = 0,1, 2, ...) obtained from the modal functions C'`r k,,) by Gram-Schmidt 

orthogonalization, so that the modal solution (8.29) can be rewritten as 

oo  

y(x,t)  = ~ ( A ' `  + iB,`)e-i~2C""+i~")ur (8.38) 
"`----0 

In fact, the solution of the problem (8 .1 ) ,  is given by 

O0 

R e y ( z , t )  = ~-~e"2""U[A,, cos(a=u,`lt) + B'`sin(a'uJt)]r (8.39) 
n = 0  

The constants A,` and B'` are so chosen that at t = 0 

Rey(x ,O)  = Yo and Rey,(x,O) = Yx. (8.40) 

For orthonormal expansion of the solution, the coefficients A,` and B,` are given by 

/0' A'` = yor and u,`B,, + v'`A~ = a21 yxCndz (8.41) 

in a simple way. More specifically for the nth term only, we can have from (8.39) 

t rO2y~2 2 t 
= sin(a'u'`lt)] fo (r 

e2a2v,,lt( A2 + B~)sin2(a2u,,lt + 01,,) f0'(r (8.42) 

and 

s = e2a'~'"Ua412(A 2,̀  + B~)(u,~2 2 + v~) sin2(a2u,`it + 0.~) ( ,~ )2dz ,  

= , , 

]o 
(8.43) 
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where 
An unBn + vnAn 

tan 0i,~ = B,~ and tan 02,~ = v,~B,~ - u,,An' (8.44) 

and - r r /2  < 01,~, 0~,~ < ~r/2. Now by Wirtinger's inequality, we can write 

t ' ~d 412 t ]o <- ]0 (8.45) 

and applying it, (8.43) becomes 

fot ~(_~_~)O2y ,2dz < e2~%"u4a414(A~rr 2 + B,,)(u,,2 2 + v~)sin2(a2u,jt + 02,,) fo'(r 2dx. (8.46) 

Suppose there exists a real to >_ 0 such that we can impose a restriction on the wave 

number knl determined by (8.32) for t > to, according to 

r 2 sin2(a2unlt + Oin) 
Ik 1212 = + _< 4 + (8.47) 

then it follows immediately, from (8.42) and (8.46) that 

fo' ( O'Y ~ ' fo' (O~Y~ ' ~-~-~] dz < a 4 - \-~~2j dx for t > g0, (8.48) 

and since a s = D / ~ - ~ ,  the proposition follows. 

The condition (8.47) restricts the wave numbers k,,l determined by (8.32). In other 

words, the initial condition Yo and yl involved in the expressions of 01,~ and 82,, are 

such that after t ime to, the associated wave number Ik,,l I falls sufficiently to satisfy 

(8.47). It should be noted that  the fight hand side of (8.47) is a positive finite quantity 

except for values of t for which a2u,,It + 02,, is a multiple of 7r. For these values of 

t, it follows from(8.43) that fg(O2y/OxOt)2dx = 0 and the inequality (8.48) is valid. 

Again, for values of t satisfying a2u,,lt + 01,~ a multiple of ~-, the expression (8.42 / 

shows that fg(O2y/Oz2)2dx = 0 and at the same time the right hand side of (8.47) is 

also zero. Accordingly, because of non-negativity of ]k~12] 2, it follows from (8.47) that 

{k~l~{ 2 = (u~ + v2n)I 4 = 0, which implies from (8.43) that fg(O2y/OmOt)2dx = 0 for these 

values of t. Thus the inequality (8.48 / is also valid for these values of t. 

8 . 5  C o n c l u d i n g  R e m a r k s  

It follows from (8.25 / that exponential energy decay rate ~ after passage of the 

time to will be max imum for largest possible ~ralue of e ,  i.e., for e - co. Choosing eo 

equal to b/ (mh + 2ml) or 1/2po according to (8.21), the maximun~c energy decay rate 

will be equal to either 2b(mh + 2ml + bpo) -1 or 2/3~o, and since as in (8.141, 
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#0 is proportional to 12, the maximum ~ decreases quadratically with increasing 1 

after the elapse of the time t0. Hence it appears, that the decay of the solution of the 

system will be slower for a longer panel. 

Here we have established uniform boundary stabilization of flexural vibrations of 

a hybrid system consisting of an elastic panel with a movable rigid hub attached at 

one end, by taking into account a natural restriction for small vibrations (see Rayleigh 

[76]) of a panel or beam. The uniform boundary stability result of this Chapter, is also 

valid analogously for an Euler-Bernoulli beam. For arbitrary initial conditions yo(Z) 

and yl(z),  when the energy and motion decay with time following (8.4) and the panel 

approaches its straight position, then there comes a time t0 > 0, when the associated 

wave number [kl[ fails sufficiantly to satisfy the relation (8.6) for t > to. For this 

reason, we have assumed (8.6) to hold at least in the final stages of vibration after 

the elapse of the time to, however large. For such cases, we have established here 

the uniform exponential energy decay estimate (8.7) for t >_ 0. Our discussion here, 

has significantly covered the cases of uniform stability of such type of small vibration 

problems from the mathematical point Of view. 
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B O U N D A R Y  S T A B I L I Z A T I O N  OF F L E X U R A L  
V I B R A T I O N S  OF A N  I N T E R N A L L Y  

D A M P E D  F L E X I B L E  P A N E L i  

9 .1  I n t r o d u c t i o n  a n d  M a t h e m a t i c a l  F o r m u l a t i o n  

To study boundary stabilization of the solution of flexural vibrations of the inter- 

nally damped (Kelvin-Voigt type) flexible rectangular panel as described in Chapter 4, 

by the system (4.7), we need a boundary stabilizer such that the solution corresponding 

to initial data with finite energy, decays uniformly exponentially in the energy space 

as t ---, -4-00. For this, we now select a viscous damping force on the rigid hub of the 

panel that means, Q(t) in the system (4.7) is taken as proportional to (Oy/Ot)(O,t) 
say, Q(t) = b(Oy/Ot)(O,t) (b > 0 is a constant) to describe the asymptotic behavior 

of the system. Hence for the study of uniform boundary stability for the vibration of 

internally damped hybrid panel, we are concerned the following system of equations. 

02Y" ,t) + 05Y 04Y t) 0, 0 _ < z _ < l , t _ > 0 ,  m-~-~tx I ~ D - ~ ( x , t )  + D-~x4(x , = 

(O,t) -4- g ~ , v , t )  -4- a-~--i(O,t ) -4- .kb (O,t) = O, t > O, 

Oy 
(o , t )  = o, ( l , t )  = o - g ~ ( l , t )  = o, 

Oz 

y ( ~ , o )  = yo(~) and ~ t x  O~ 
0~ ' ' ' = y l ( z ) ,  

where the parameters 

t>O, 

O<_z<_l, 

m, D, p, a, ~ are the same as defined in Chapter 4. 

(9.1) 

t The contents of this chapter have been communicated in the form of a paper Ezact Controllability and 
Boundary Stabilization of Flezural Vibrations of an Internally Damped Flezible Space Structure --Gorain 
and Bose, 'Applied Mathematics and Computation'. 
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9.2 Energy of the System 

To each solution of (9.1), the total energy at time t is defined by 

, .o y.,1 1 [m D(~x2 ) jdx + 1 Oy (9.2) 

Differentiating with respect to t and using the first equation o~ (9.1), we get 

D fo z 02y, Oay z Oy 0 (Oay 04y ' Oy 02y(O,f ) 
o ,ot - o ]o at + + E(t) 

Integrating by parts and applying the boundary conditons in (9.1), we have after a 

simple calculation 

dE fo' " 03y x2 ( ~  2 
d---t - # D( -O-~ i -~ )  d z  - b (0,t))  , (9.3) 

since A -- 1/D. The negativity of the right hand side of (9.3) shows that the energy 

E(t) of the system (9.1) is nonincreasing with time and the system is a non-conserving 

system. The integral term in (9.3), ensures that the energy of the system (9.1) decays 

due to incorporation of Kelvin-Voigt type material damping of the structure, while the 

last term is due to viscous boundary damping at the hub end. Thus we have 

E(t) <_ E(O) for t _> 0. (9.4) 
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9.3 Uniform Boundary Stability Result 

There are several authors (cf. Chen et aI. [13], Chen and Zhou [15], Littman 

and Markus [55], Morgfil [66] and Rao [73], to name but a few) who have studied the 

boundary stability of the vibrations of various types of flexible space structures governed 

by undamped Euler-Bernoulli beam equation with a clamped end. They have discussed 

the limitations of the asymptotic behavior of the solution of the system together with 

the uniform stability. However in the previous Chapter, we have ratified the uniform 

boundary stability for this type of specific hybrid problem, manifested by a constraint of 

small vibrations. The objective in this context is to substantiate explicitly the uniform 

exponential energy decay rate of vibrations governed by the system (9.1), that means 

we want to set up the result of the form 

E(t) < Me-~E(O) t > 0, (9,5) 

for some reals ;~ > 0 and M >_ 1. 
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The uniform exponential energy decay for the solution of (9.1) follows from the 

ensuing Theorem: 

T h e o r e m  9.1. Let y(z, t )  be a solution of (9.1) corresponding to the initial 

conditions {Yo,Y:} with finite energy, i.e., E(0) < Do. Then the energy of the system 

(9.1) defined by (9.2) decays exponentially with time, i.e., E(t) satisfies (9.5) for some 

positive /~, depending explicitly on the material damping parameter #, and some real 

M > I .  

Proof .  Let e > 0 be small but fixed constant. We define a function E~(t) 

where 

E~(t) = E(t) + e#p(t), t >_ O, 

Now differentiating (9.7) with respect to t and replacing 
-#D(OSy/Ox4Ot) - D(O4y/Oz4), we get 

by 

(9.6) 

l l , . , {O~y ,~2  

m(O2y/Ot 2) by 

dp _ l 2 t 0 {03y 04y , 

t Oy 2 .02ylo 
+P ]o D~O'Y Oz'OtO3Y d~ + m , ( ~ ( 0 , t ) )  + , ~ h y ( 0 , t ) ~ ,  ,t). 

, ,oy , ,  o'y ~ oy (o~y o3y ~], 

I ,02y,2 Oy 2 .O~y~O -D ]0 [ : )  d~ + m,(: (0 ,0)  + re ,y(0 ,0: ,  ,t) 

Integrating by parts, we have from above 

dp 
dt 

Applying the boundary conditions (9.1), it yields 

dp i ,Oy,2 l ,02y,2 Oy 

since a = mh/D, A = 1/D. We note that 

-: 

and 

2 
, (9.8) 

rn 0y 2 :[(:(o,,)) § (,(o,,I)']. 
Again by Wirtinger inequality (cf. [80]), we have 

(9.9) 

(9.1o) 

(9.11) 
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which can be written as 
' 2 2 , 4/2 ' ( _ ~  2 

2 1 z 2 412 t 

Applying the inequality of the form 

we have from (9.12) 

2 tf2dx~o t ~- fo g2dz' 

Also since 

fot y2 dx 

(Oy/Oz)(O,t) = O, we have 

[( ' " < 21 + 

412 t (02y 
<- --~ fo ~'-O~x 212dx" 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

and there exists a constant K > 1, independent of t such that 

_ t(O2y~dx. (9.16) (y(0,0)'  < 

By the use of (9.9)-(9.10), (9.14)-(9.16), we can write 

Im fz OY dx Jo Y'-~ + mhy(O't)~ (O't)l ~- RoE(t), (9.17) 

for some suitable positive constant Ro, independent of both t and #, and 

o < l p f o  /02y, _ tD~-~x2}:dz ~#Z(t) (9.18) 

in virtue of (9.2). Thus from (9.6), we find 

(1 - e#Ro)E(t) ~ Z,(t) ~ [1 + eg(Ro + p)]Z(t)  (9.19) 

with the help of the relations (9.7), (9.17) and (9.18). Again differentiating (9.6) with 

respect to t and using (9.3) and (9.8), we obtain 

dE, t Oy 2 , Oay 2 

' ,02y.~ Oy 2 
-e# f ~ D(-~-i~2) dz +(e#mh--b)(-~(O,t)) 

t ' i ) a y ,  (3e,mh b) (~_~yt (0, t) ) 2 

O~y �9 0y 2 
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In the same way in virtue of (9.14) and (9.15), we can have 

_ _  1( o~y ~d~] fo' (~)~dx<21[(~(O' t ) ) ' -F161a 7r 4 ~'Ox'Ot' J" 

Utilizing (9.21), the relation (9.20) can be written as 

dE, < 
dt - 

t /  Oay ,2 

Oy 
+ + 

If we choose e < e0, where 

eo = min (DTr4/48ml 4, 2b/(6#ml + 3#mh), I/(#RO + #2)}, 

then from (9.22), it follows that 

dE, 
+ e#E(t) <_ 0 

dt 

and at the same time we have from (9.19) 

#2eE(t) <_ E,(t) <_ #oE(t), 

where 

/Zo = 1 + eRo/z + e# 2 

is a quadratic function of #. Introducing (9.25) into (9.24), yields 

dE, 
d-T + ;~E,(t) _< 0, 

where 
/3= ~t~ - - > 0 .  

#o 

Now multiplying (9.28)by e m and integrating over 0 to t, we obtain 

E,(t) < e'O'E~(0), for t >_ 0. 

Then finally, with the help of (9.25), it follows from (9.29) that 

E(t) < Me-t3'E(O) for t >_ 0, 

w h e r e  

M =  //~ > 1 .  p2 e - 

(9.21) 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

(9.31) 
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9.4 Concluding Remarks 

Since the energy E(t) defined by (9.2) of the system (9.1) decays exponentially, 

i.e., E(t) --, 0 as t --, +oo, we conciude that the solution of the system decays 

uniformly exponentially with time. It is obvious that the energy decay rate will be 

maximum for largest admissible value of ft. From the relations (9.26) and (9.28) as we 

have fi = e#/(1 + eRo#+ ~#2), it follows that fl increases with the increasing values of 

~. The expression for ~ as a function of viscoelastic damping parameter # shows that 

the decay rate /3 will be maximum for # = 1/x/~. For this value of #, we thus have 

~max = x/~/(2 + Ro 'x/q), which will be larger for greater admissible value of e. As e is 

bounded above by eo given by (9.23), eventually we have /~max = v ~ / ( 2  + R0v/~). 

in this Chapter, we have studied the uniform boundary stability of flexural vi- 

brations of an internally damped flexible panel hoisted by a rigid hub at one end and 

totally free at the other end. The hub dynamics leads to a non-standard boundary 

condition and the overall system becomes a hybrid model. To make the problem more 

realistic, internal material damping of Voigt-type has been incorporated. It has been 

shown that, by applying a boundary stabilizer (viscous damping) at the hub end only, 

uniform stabilization of the vibrations of the system is possible without applying any 

constraints at the free end. By analogy, the method is applicable to an Euler-Bernoulli 

beam instead of the panel and in this case the flexural rigidity D of the panel will be 

replaced by EI  of the beam. 



C H A P T E R  I0 

U N I F O R M  S T A B I L I T Y  OF I N T E R N A L L Y  
D A M P E D  W A V E  E Q U A T I O N  IN A 

B O U N D E D  D O M A I N  IN Rn t 

10.1 I n t r o d u c t i o n  

In the previous Chapters, we have particularly considered one dimensional torsional 

or ttexural vibrations of hybrid models of dynamics. We have discussed the uniform 

boundary stability for the solution of such systems with the demonstration of both 

internally damped and internally undamped flexible structures as models. We have 

observed the relevence of the boundary stabilizer at one end with the other end totally 

free, to procure the asymptotic behavior of the solutions of the systems. In this Chapter, 

we are concerned about the uniform stability of the solution of internally damped wave 

equation y'~ = Ay + ~uAy t with small damping constant p > 0, in a bounded domain 

in R'~ under mixed undamped boundary conditions. Here the prime denotes the 

differentiation with respect to time and A the Laplacian in R".  This mathematical 

equation is simple but realistic for the dynamics of flexible mechanical structure and is 

known as 'Kelvin-Voigt' model of viscoelasticity in which a linear spring is connected 

with a dashpot in series (cf. Fung [25], Rabotnov [71]). In this case, the differential 

relation between the stress a and strain e is given by o" = E(e  § pc')  which is better 

than ordinary Hook's law for real elastic structures, E being the modulus of elasticity 

of the structure. Earlier investigations have considered the undamped wave equation 

with certain forms of damped boundary conditions proving similar and faster energy 

decay rates. 

tThe contents of this chapter has been published in the paper Ezpo~en~ial E~ergy Decay Estimate 
for the Solutions of ln~ernally Damped Wave Equa~ioa in a Bounded Domain --Gorain, 'Journal of 
Mathematical Analysis and Applications', Vol. 216, 510-520, (1997). 
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1 0 . 2  M a t h e m a t i c a l  F o r m u l a t i o n  

Let fl be a bounded connected set in I t"  and let F be its boundary which is 

piecewise smooth consisting of two parts F0 and F1 such that F = F0 U F1 and 

~'0 N F1 = 0. We denote by ~,, the unit normal of F pointing towards exterior of ft. 

Let z ~ be an arbitary but fixed point in I t"  and set 

re(x) = z - z ~ z e R".  (10.1) 

Let the two disjoint open subsets r l  and F0 of F 

.~(~).~(x) > o 

m(~).~(~) < o 

where . denotes the scalar product in It,,. 

be defined as 

on r l  (10.2) 

on Fo, (10.3) 

Herein we shall study the uniform stability of the internally damped wave equation 

y" = Ay + , a y '  in n • (0,oo) (10.4) 

with the following undamped mixed boundary conditions 

y = 0  on F0x(0,,oo) 

Oy/Ov = 0 on r l  • (0, oo) 

and initial conditions 

(lO.5) 

(10.6) 

y(0) =yo and y'(0) = y l  in fl (10.7) 

where ' denote the time derivative, A the Laplacian in R" taken in the space 

variables and # > 0 is the small internal damping constant. 

Physically, equation (10.4) occurs in the study of vibrations of flexible structures 

in a bounded domain governed by the Kelvin-Voigt model of viscoelasticity. The mo- 

tivation for incorporating internal material damping in the wave equation as in (10.4) 

arises from the fact that, inherent small material damping, usually uniform of constant 

measure (~ in the Voigt model), is always present in real materials (cf. Christensen 

[16]). Hence from the physical point of view we say that internal structural damping 

force will appear so long as the system vibrates. 
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1 0 . 3  E n e r g y  o f  t h e  S y s t e m  

The total energy E(t) for the solution of the system (10.4)-(10.7) defind by 

1 r ,2 
E(O -- ~], (y + lVyt2)dz. (10.8) 

The question of uniform exponential decay of energy of the solution of the undamped 

wave equation in ft has been studied by a number of authors--Chen [6], Lagnese [42], 

Lasiecka and Triggiani [46], Triggiani [86], and Lions [52]. They considerd the following 

prototype system : 

y " =  Ay in fl x (0, oo) (10.9) 

y = 0 on ro • (0,oo) (10.10) 

Oy/0v = -b(~)y' on r l  • (0,or (10.11) 

y ( 0 ) = y o  and y ' ( 0 ) = y l  in fl (10.12) 

where b(z) E L~ b(x) > bo > 0; that is boundary damping is essential on some 

portion rl(r~ # r of the boundary F. They proved result of the form 

E(t) < Me-~tE(O), t > 0 (lo.13) 

M :> 1 and /~ > 0 being some constants. Later, Lagnese [43] and Komornik [37] 

obtained somewhat faster energy decay rates for certain forms of b(z). Also Chen [9] 

demonstrated faster energy decay rate when external damping 2~/y' is present in the 

left hand side of (10.9). In the method of treatment [9,37,43] adopt direct method by 

constructing suitable functionals related to E(t),  where as [6,42,86] employ semigroup 

theory (el. Pazy [69]) in as much as the underlying operator of the system generates 

strongly continuous contraction semigroup. 

Establishment of uniform exponential energy decay of the form (10.13) is now 

sought under natural boundary conditions (10.5) and (10.6), without having to introduce 

boundary damping. Here, the exponential decay rate will depend on /~ and we adopt a 

direct method such as in Komornik [37], Lagnese [43] for extracting the functional form 

of this dependence. In contrast, Chen and Russell [14] considerd generalised operator 

version of (10.4) of the form y" + By'  + Ay = 0 t,o study the an~'~icity of the 

semigroup of contraction over suitable ttilbert space of the ~aderlying operator. Also, 

~everal exa__mples of partial differential equations with ~ or point control have 

been illustrated in Lasiecka and Triggiani [49] which can be reduced to the abstract 
form. 
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Now by differentiating equation (10.8) with respect to t and replacing y" by 

Ay + g a y '  from the governing equation (10.4), we obtain 

= ]o ' ~ (Vy.Vy)]dz.  z'ct) [y( y + ' 

Applying Green's formula we have 

[ .  ,~oy Oy'~ 
= . .  Y ~-g-;v + ~-g-gv) dr  - #/fl IVy'12dz E'(t) 

= -Iz]~ [Vy'[~dx, (10.14) 

where the boundary conditions (10.5)-(10.6) have been used. We thus have 

E'(t) < 0 for t > O. (10.15) 

Hence energy is nonincreasing with time, i.e., 

E(t) < E(O) for t > O. (10.16) 

We establish from the negativity of the right hand side of (10.14) that the energy of the 

system is dissipating due to the presence of internal material damping of the system. 

10.4 Uni form Stabil i ty Result  

The validity of the uniform exponential decay of E(t) for the problem (10.4)-(10.7) 

follows from the Theorem: 

T h e o r e m  10.1. Let y be a regular solution of (10.4)-(10.7). Then the energy 

E(t) <_ Ue-~tE(O), t >_ 0 

for some reals M > I ,  f / > O  of the form ~ = g / ( a #  2+b~ t+c ) ,  a, b, c >  0 and for 

all initial states Yo E H~-0(~2 ), y, E Hl(ft) where, H~.0(n ) = {YIY ~ H=(ft), y = 0 on 

r0} and Hk(~),  k being positive integer, is the classical Sobolev space of real valued 

functions y whose partial derivatives defined in the distributional sense of order < k 

lie in L2(Ft). 

Before proving the above main Theorem, we first establish the followings. 

L e m m a  10.1. If y be a regular solution of the equations (10.4)-(10.7), then the 

funtion pl(t) defind by 

1 ihy l , )d x 00.17) = ]o ( Ivr  + 
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is nonincreasing for t >_ 0. 

P r o o L  Differentiating (10.17) with respect to t we obtain 

' V " AyAy']  dz. p',(0 = fo [(v~, ~ )+ 

Use of (10.4) the above yields 

0 t 

,,,;(,) _- - , / o  
where we have used the Green's formula. Further, using the boundary conditions (10.5) 

and (10.6) we have 

pt,(t) = -u /n lAu'12dz <- O. (10.19) 

Hence pl(t) is nonincreasing for ~ _> 0. We conclude that 

pa(L) <_ pl(0) for t > 0. (10.20) 

L e m m a  10.2. Let y be a regular Solution of (10.4)-(10.7). If we define a function 

F(t) by 

then IF(t)l _< Kpl(L) for L >_ 0, where K _> 1 

P roo f .  From equation (10.21) we can write 

We now define a constant K _> 1 so that we can write 

F(t) = ]o [vr  (~0.2~) 
is a constant, independent of L. 

(I0.22) 

It follows from (10.22) then 

IFCt)l _< Kpa(t) 

Hence the Lemma foUows. 

(10.23) 

The inequality of the form (10.231 can be written due to the fact that the ex- 

pressions mk(O~y/OXkOXj) can be reduced to the form Mk(O2y/Ox~) by suitable 

orthogonal trasformation of the axes zj (j,k=l,2,...,n) and Ay is invarient with re- 

spect to orthogonal transformation (cf. Edwards [2011 , the usual summation convention 

of repeated indices being used. 

for L _> O. (10.24) 
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L e m m a  10.3. For every y G Hl(~l) 

/o [2y (~ v)y +,~lyt~]d~ 

Proof .  We have 

= km.uly[2dF. 

Hence the Lemma. 

L e m m a  10,4. If 

= f~ div(mlY[2) dx 

= frm.Utyl~dF. 

(lO.25) 

y be a regular solution of (10.4)-(10.7), then 

p'(t) + #p~o(t) + 2#F(t) + 2E(t) 

_< ~2 fro Im'~llVy'12dr + fr, m~Y'2dr (10.26) 

where, 

p(0 = ]o [2r (~ -  llyr (10.27/ 
and 

po(t) - n +2 1 / .  iVYl2dx" (10.28) 

Proof .  Differentiating (10.27) with respect to t and replacing y" by Ay + #Ay' 
we have 

p'(t) = / f l  [2(Ay + I~Ay')(m.Vy) + (n - 1)(Ay + IzAy')y + 2y'(m.Vy') + (n - 1)y'2]dz. 

Applying Green's formula we obtain 

O '  

- ]o [2v(m.vy) + (~ - ~)vy].v(y + .r 

+/o [2r162 (~-  ~)r 

Using the boundary conditions (10.5) and (10.6) we have 
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p'(t) 

since 

from above 

: ~-~v)(m.Vy)dr 

+ / n  [2y'(m.Vy') + ( n -  1)y'2]dx 

- # (  n + 1 ) f n ( V y . V y ' ) d , - / .  ({Vyl' + y '2)d, ,  

V(m.Vy) = Vy + (m.V)Vy. Applying Lemma 10.3 for Vy and y', 

o '  frm.v(y,~ iXTyl2)d r p'(t) = fro 2(OO-~Yv + # - ~ )  (m.Vy)dF + - 

- 2 t~F( t ) -  #P0 ' ( t ) -  2Eft), 

with the help of (10.8), (10.21), (10.28). 

I V y }  2 = {(Oy/Ov)l 2 on F0. Also m.v > 0 

we obtain 

(lO.29) 

Since y = 0  on F0, Vy  = u(Oy/Ov) and 

on F,. Hence we have from (10.29) 

since, m.v  < 0 

p'(t) + ~,p'o(t) + 2#F(t) + 2Eft) 

<- fro § 1o ,m.v,(,v,,,. § § 

-< " '  ~o t~.-tlvy'l'dr + ]~, m.~y"dr 
on Fo, m.v  + ]re.v{ = 0 on Fo. Hence the Lemma. 

We are now ready to prove the main result. 

P r o o f  of  t he  T h e o r e m .  We define a function G(t) for all t >_ 0 as 

Oft) = AS(t) +/z[p(t) + IzPo(t) + pl(t)] 

where X is a positive constant defined by 

(lO.3O) 

(10.31) 
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for all y' E H~-o(fl ). We also define the positive constants ),o, A1, and A, by 

E(t) < Aopl(t) 

J f l  J f l  

and 

(10.32) 

(10.33) 

/to tm'vltVy'12dF <- A2 In [AY'12dz (10.34) 
for all y E H~o(f~ ). Inequalities (10.32) and (10.33) arise due to Poincare. Inequalities 

(10.31) and (10.34) follow from the combination of Poincare inequality with the Trace 

inequality in H~(f~) (cf. Aubin [1]). Here all A, Ao, A1 and A2 are independent of t, 

depending only on the set f~ in R" and eventually on x ~ They are also independent 

of initial value of {yo, yl}. Their explicit determination is in general very difficult. 

Now we have from (10.27) 

Ip(t)l < ~ / n  (Y'= + I Vyl=)d~ + ('~ - 1) 

_< [2Ro + (n - 1)A1]E(/) = CoE(t) (10.35) 

where, Ro = sup{Im(=)l : z E f~} and Co = [2Ro + ( n -  1)A1]. From (10.28) we also 
have 

0 < po(t) <_ i n + 1)E(t). (10.36) 

With the help of (10.32), (10.35) and (10.36), it follows from (10.30) that 

(~ + ~/~o - vCo)E(t) < c(z) 

<_ [A -t- #(Co +/z(n + 1))]E(/) + #pl(t). (10.37) 

Now differentiating (10.30) with respect to t and applying (10.14), (10.19) and Lemma 

10.4, we have 

a'Ct) -- :~E'Ct) + ~[(p'Ct) + #P'oCt) + p'i(~)] 

-2#F( t )  - 2E(t) - / ~ / ,  Ihy'l~dz]. 
Appl~ng the inequalities (10.31), (10.34) and the Lemma 10.2, we obtain 

G'(z) _< ,=(~..~.- 1) f ,  IA~'I'd= + 2p, [ .Kpz ( t ) -  E(t)]. (10.38) 



Now since 

(10.16), we have 

positive constant 

Uniform Stability o[ Internally Damped Wave... 102 

{yo, yz} E Hr2o(f~) x H1(fl),  therefore, from the inequalities (10.20) and 

pl(t) < pl(0) < oo and E(t) < E(0) < c~. Hence there exists a 

We can assert that 

t > o .  

for all y'  e H~o(f~). 

E'(t) >_ K*p'l(t ). As 

decreases faster than 

Ko such that  

p,(t) < KoE(t). 

Ko is finite, provided that sup{p,(t)/E(t)} 

Let 

(10.39) 

is finite for all 

We can define a finite constant K* > 1 by the Poincare inequality 

f. IVy'l'd;  _< g*/. t/XY'12dx (10.40) 

Applying this inequality, we have from (10.14) and (10.19), 

E'(t) and p'l(t) are both negative, we conclude that  pl(t) 
E(t) and the assertion follows. 

By (10.39), the inequality (10.38) can then be written as 

G'(t) <_ #~(#A2 - 1) f [Ay'12dx + # ( 2 # g g o  - 1)E(t) - #E(t). 
J l t  

# _< rnin{1/A2, 1/2KKo, A/Co}, 

(10.41) 

(10.42) 

which determines here an upper bound of the value of # consistent with stability, we 

then have from (10.41) 

G'(t) <_ -#E(t)  (10.43) 

and at the same time we have from (10.37) 

~oE(t) < G(Q < [A +/~(Co + #(n  + 1) + Ko)]E(t) 

where the positive constant 

= #oE(t) (10.44) 

p~ = a# 2 + b# + c 

is a quadratic function of /~, and a = n + 1, b = Co + Ko, c = A 

it. Use of (10.44) in (10.43), yields the differential inequality 

t > 0 ,  

wh~e  

(lO.45) 

are independent of 

/~ =/z//zo. (10.47) 

Multiplying (10,46) by e at and integrating from zero to t, we get 

a(t) <_ e-a'•(0) t >__ 0. 

G'(t) + 19G(t) <_ 0 (10.46) 
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Eventually it follows from (10.44) that 

E(t) < Me-~'E(O) 

where, 

for t > 0 (10.48) 

in virtue of equation (10.44). 

#o`ko M -  > 1 (10.49) 
# 

10.5 Concluding Remarks 

The expression for ~ in (10.47) with (10.45) as a function of the viscoelastic 

damping parameter # shows that the decay rate is maximum for I~ = ~/,k/(n + 1). 

Hence from (10.42), the maximum decay rate is attained for 

# =  min{1/`k2, 1/2ggo, ,k/Co, ~/`k/(n + 1)}. (10.50) 

Properties of the decay rate is restricted by the lack of explicit knowledge in general, of 

the constants `k, `k2, K, Ko, Co appearing in the expression. 

This study deals with the exponential decay of the solution of the internally damped 

wave equation (10.4) together with boundary conditions (10.5) and (10.6) and initial 

conditions (10.7) in the sense of decay of the total energy according to the stated 

Theorem. The problem considered here is a generalization of abstract dynamical system 

with internally damping term. This is the main interest of this analysis, since internal 

structural damping is always present in actual systems (cf. Christensen [16]). The 

boundary conditions are standard without boundary damping. For establishing the 

stability theory, recourse is taken to the available methods of functional analysis, basing 

the main result on the necessary Sobolev spaces for the initial values of the system. 

Finally we conclude that systems of such type ultimately go to rest due to their own 

material damping property. 
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B O U N D A R Y  S T A B I L I T Y  O F  I N T E R N A L L Y  

D A M P E D  W A V E  E Q U A T I O N  I N  A 

B O U N D E D  D O M A I N  I N  R n t 

1 1 . 1  I n t r o d u c t i o n  

The formulation of the mathematical problem in the last Chapter, has put for- 

ward one step towards the generalization of linerized wave equation to Kelvin-Voigt 

vi~scoelastic materials, where the stress is not simply proportional to strain. There are 

many flexible structures, the dynamics of which are complicated and non-linear in prac- 

tice. Linearized models are thus sought for simplicity and more accurately to describe 

the physical phenomena exactly to some extent. In this Chapter, we move further to 

generalize linearly the mathematical formulation of the last Chapter to more realistic 

model for the dynamics of flexible mechanical structures. In fact, we are concerned 

about the uniform boundary stabilization of the mathematical problem satisfying the 

differential equation y" + ~y"  = c2(Ay + tray ' ) ,  0 < )~ < it, in a bounded domain 

in R"  with smooth boundary F. Such equations arise in the vibrations of flexible 

structures possessing internal material damping and modeled by the Standard Linear 

Model of viscoelasticity, in which a linear spring is connected in series with a combina- 

tion of another linear spring and a dashpot in parallel (cf. Fung [25], Rabotnov [71]) 

and the stress ~ and strain e are related by cr + ~ '  = E(e + #e'). Explicit form of 

exponential energy decay rate is subject to investigation for the solution of the above 

problem with a velocity feedback at the boundary. 

1 1 . 2  M a t h e m a t i c a l  F o r m u l a t i o n  

Let ft be a bounded open connected set in R n having a boundary F consisting 

of two parts r0 and F: ~ 0, F1 being relatively open in r .  Let xo be an arbitrary 

tThe contents of this chapter have been published in the paper Stability of tat Bouadary Stabil@ed 
Internally Damped W ~  ~ y" + Ay" -- c2(Ay + pa l / )  in a Bounded Dsma/a in R" --Bose 
and Goraln, 'Indian Journal of  Mathematics' Vol. 40, 1-15, (1998). 
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but fixed point in It" and let 

m ( ~ ) = ~ - ~ o  

with 

such that 

(z ~ It") 

Ro = sup{Im(~)l}, 
= E f t  

m(z) .g (z )  < 0 on Fo, 

m ( ~ ) ~ ( , )  >__ ~ > 0 on F1 

where u denotes the outward unit normal to F and . the scalar product in 

With (11.3) and (11.4) in view we further stipulate that, 

(i) if P o # 0 ,  r is of class C = with Fof3F~ = 0 ,  

(ii) if F 0 = 0 ,  r is convex with I ' o n r l = 0 ,  

and F = f'o U ]Pl. 

Let b(x) be an L~ function satisfying 

consider the problem 

b(x) > bo > 0 on F1. 

y" + k y ' =  c=(Ay + gay ' )  in fl x (0, cr 

subject to the mixed boundary conditions 

(11.1) 

and the initial conditions 

(11.2) 

(11.3) 

(11.4) 

R n , 

We now 

(11.5) 

where primes denote time derivatives and A the Laplacian in It" taken in the space 

variables, $, g being small positive constants satisfying X < g and c > 0 a constant. 

In (11.7), b is of the nature of small viscous boundary damping coefficient, with bo 

as small positive constant. 

Physical motivation for studying the problem (11.5) arises from the problem of 

vibrations of an elastic structure with internal material damping, however small always 

present in real materials (d. Christensen [16]). A simple but realistic model for the latter 

y ( z , 0 ) = y o ,  y ' ( z , 0 ) = y l  and y"(2:,O)=y2, (ll .S) 

y = 0 on F0 • (0, cr (11.6) 

Oy 
- by' on F1 x (0, oo), (11.7) 

Ov 
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is the so called 'standard linear material model'; in which a linear spring is connected 

in series with a combination of another linear spring and a dashpot in parallel (cf. Fung 

[25], Rabotnov [71]). In this case the differential relation connecting stress o- and strain 

e is given by 

tr + Atr'= E(e + #e'). (11.9) 

Equation (11.9) models real flexible mechanical material better than ordinary Hooke's 

Law. Torsional and longituclinal vibrations of a linear uniform structure leads to (11.5) 

in one-space dimension and equation (11.5) is its generalisation in R n. The case A =.0 

for the so called Kelvin-Voigt model of viscoelasticity has been treated in the previous 

Chapter. 

We notice in the boundary conditions (11.6) and (11.7) that there exists a Neumann 

action on the boundary I'1 and zero Dirichlet action on the boundary F0. In fact, the 

boundary F comprises partly of a nontrapping reflecting surface and partly an energy 

absorbing surface. Eventually the action on the boundary F1 entails the viscous 

damping (velocity feedback damping) on the boundary F1. 

For the sake of simplicity, we substitute 

u ---- y + Ay' (11.10) 

for the system (11.5)-(11.7). The governing differential equation (11.5) then becomes 

u " = c 2 A u + c 2 ( # - A ) A y  ' in f l x  (0, oo) (11.11) 

and the boundary conditions (11.6)-(11.7) change to 

u = 0 on Fox (0, oo), (11.12) 

Ou 
-- bu' on F1 x (0, oo). (11.13) 

01., 

Evidently, the system (11.10)-(11.13) is equivalent to the system (11.5)-(11.7). 

1 1 . 3  E n e r g y  o f  t h e  S y s t e m  

To define the energy E(t) of the system (11.10)-(11.13), we first multiply (11.11) 

by u' and integrate over N, which on application of Green's formula yields 
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Applying the relation (11.10) and the boundary conditions (11.7), (11.12) and (11.13), 

we obtain from (11.14) 

2c9t10 f~ (u,2 + c2[Vu[2)dz = 

which can be rewritten as 

lO]o 
20t 

[ 
A) Vy.  (y + AVy")dx, - c 2 ( # -  . ' V ' 

d i t  

0 by'2 dp 

IVy'12 dx. (11.15) 

At this stage, if we define the energy of the system (11.11)-(11.13) by the functional 

1 [u,2 [2 ~cl 2 

where u and y are related by (11.10), then clearly it follows from (11.15) 

C 2 E l ( t ) :  - /rl bul2dF - c2(It - A)~ frl by'2d[' - c2(Iz - A) /o ]Vy'12dx. 

From (11.17) it follows that 

with time and hence 

E'(t) <_ O, that means, the energy 

(11.16) 

(11.17) 

E(t) is nonincreasing 

The third integral in (11.17) shows that energy of the system is dissipating throughout 

the domain due to the presence of the internal damping of the system and similar is the 

case from the first two integrals due to viscous boundary damping of the system. 

There are several papers on the problem of boundary stability for the solution 

of wave equation in a bounded domain (cf. Chen [6,9], Lagnese [42,43], Lasiecka and 

Triggiani [46], Komornik [37], Komornik and Zuazua [38] and Lions [52], to name but 

few). Chen [6] first established explic'itly the exponential energy decay rate for the 

solution of wave equation by considering certain geometries of the domain. In order 

to obtain stability of the wave, distributed viscous boundary damping is taken into 

consideration. Later, Chen [9] treated the wave equation having both distributed viscous 

damping and boundary damping. The theory of boundary stabilization of wave equation 

has been improved by Lagnese [43]. Komornik [37] obtained faster energy decay rate 

for such problem by constructing a special type of feedback. 

E(t) _< E(0) for t _> 0. (11.18) 
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11.4. Uniform Boundary Stability Result 

The main result viz., the uniform exponential stability for the solution of the above 

system (11.10)-(11.13), is follows from ensuing Theorem. 

T h e o r e m  11.1. If for every initial values {Yo, Ya,Y2} for which E(0) < co, then 

the energy E(t) of the system (11.5)-(11.8) converges to zero uniformly exponentially 

as t -~ +co. In other words, E(t) satisfies the result 

E(t) <_ i e - ~ E ( O )  t >_ O, (11.19) 

for some reals M > _ I  and /3>0 .  

The result (11.19) will be obtained after some preliminary steps. 

L e m m a  11.1.  For every u C Hi(12) 

/ot2,,.(m.v),~ + <=i'll, = f~ m.-I=i=~r 
where Hi(f/)  is the classical Sobolev space of real valued function of order one. 

Proof.  We have 

= In div(mlul2)dx 

= / r  m'ulu]2dP" 

Hence the Lemma. 

p(t) 
L e m m a  11.2. If y(x,t) is a regular solution of (11.5)-(11.8), then the function 

defined by 

1 c21Aul2)dx c2(tt- A)A p(t) = -~/, (IVu'l = + + 2 /a IAY'I'dx' (11"20/ 

is nonincreasing with time. 

Proof.  Differentiating (11.20) with respect to t and then replacing c2Au by 

u" - c2(# - A)Ay' from the relation (11.11), we obtain 

= Jo + 

Applying Green's formula, and using the relation (11.10) and the boundary conditions 

(11.12)-(11.11)~ we get 

p'( t )  = - Jr[, b u ' a d r  - c=(" - A) J.[ IAy'l~dz. (11.21) 
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Thus the function 

t>_0. 

L e m m a  11.8. If y(z,t)  
but fixed positive real, then 

p'o(t) + p'l(t) 

where 

p(t) is nonincreasing for t >_ 0 and we have p(t) <_ p(O), for 

is a regular solution of (11.5)-(11.8) and e is a small 

+ p~(t) <_ - 2 E ( t ) +  c~(tt - X) [K(# - A)/a 

+ 

+ Jo ,w,'d,] 

+ 

po(t) = In 2u'(m.Vu)dx, 

pl(t) : /~(n- 1)uu'dz, 
1 

p~(t) = ~(n + 1)c~(#- A) fo [Vyl2dx' 

(11.23) 

(11.24) 

(11.25) 
and the constants K, K0, K1 are independent of t, defined by the inequalities 

fro Im., , l lVy?dr <_ K f~ I,",y'l~d=, (11.26) 

fr, by'2dP <- Ko fn IVY'12dx' 
f E H2(~),  f -- 0 on Fo} and 

(11.27) 

for all y ' e  H~.0(~ ) = {f : 

fr, bu2dF <- K1 ffl IVul2dx' (11.28) 

for all u E H ~ 0 ( a  ) = { f  : f c H l ( a ) ,  f = 0  onF0}. 

Proof .  Differentiating (11.23) and (11.24) with respect to t and using (11.11), 
we have 

+(n - 1)c~fr ~ [Au + (p, - A)Ay']udx + (n- 1)fnu'2dx. (11.29) 

Applying Green's formula (11.29) gives 

+ 2for 



Boundary Stability of Internally Damped Wave... 110 

Since, V(m.Vu) = Vu + (m.V)Vu, from above after a simplication leads to 

- c2/n [2Vu.(m.V)Vu + (n + 1)[Vul2]dx +/n [2u'(m.V)u' + (n - 1)u'2]dx. 

- ~ ' ( , -  ~) fo [ 2 v r  + (n + 1 ) w . v r  (11.30) 

Applying Lemma 11.1, (11.30) yields 

= _ ~)oy'~ - w l ' )  

]. (."§ 
0 

- ~-, '( ,  - ~)(,  + 1 )~  fo Ivyl'~. - , ' ( ,  - ~)(n + 1)~/ .  Ivr 

With the help of the energy equation (11.16) and relation (11.25), the above becomes 

-2c~(~-  ~)fo [vr  - 2~(t). (11.31) 

Applying the inequality (11.27), the relation (11.31) gives 

- 2 ~ ' ( , -  ~)fo [ v r  a~ - 2~(t). 

Now we consider the boundary integrals in (11.32) and set 

and 

Y : frm.~,(u'2 c2[Vul2)dF. 

In the sequel, we use the following inequalities 

labl ~ l(aa2+ lb') ,  for any positive real a, 

(a + b) ~ < 2(a ' + b~), 

IVy'12dx 

(11.32) 

(11.33) 

(11.34) 

(11.35) 

(11.36) 
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and combination of (11.35) and (11.36) gives 

C 2 
I(a + b)cl < ,~(12 + b 2) + 2~" 

Since y = 0 on Fo, Vy = v(Oy/Ov) and [Vyl2  = I(Oy/Ov)l 2 

since u : 0 on Fo, V u :  u(Ou/(gu) and [Vul2 : I(Ou/Ou)l 2 on Fo. 
(11.33) can be written as 

(11.37) 

on Fo and also 
Applying these 

2 Ou Oy' 

O'  

U t2 1 

where we have used the inequalities (11.35) and (11.37) and the boundary conditions 

(11.7) and (11.13). Since m.u < 0 on Fo, we have re .v+  Ira.v[ : 0 on Fo and 
hence from (11.38), 

--f- Jr, b[Vul~dF 

+ec2(n - 1)2# +)~ fr C2fr ( # -  A)'k/r 2)~ bu2dF + -~e bu'2dF + c2 - by"2dF. (11.39) 

Again from (11.34), we can have similarly 

Y _< - c  2 fro (rn.v) (O~-~Uv)2dF + fr ,(m.v)u"dF - c  2 fr(m.v)]Vu]'dF. (11.40) 

By the inequalities (11.26) and (11.28), we have from (11.39) and (11.40) 

Taking e < ()~')'/2bP~)(tt + A) -1, the above ultimately yields 

X + f _< c ' ( t t -  )~)2K/, [Ay'12dx + ed(n  - 1 ) 2 ~ K 1  fp, IVulUdx 
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Using the relation (11.41), the Lemma follows immediately from (11.32). 

We are now ready to establish the main result (11.19) for the solution of the system 

(11.10)-(11.13). 

P r o o f  o f  t h e  T h e o r e m .  We now introduce a function G(t) for all t >_ 0 by 

G(t) = E(t) + e[p0(t) + pl(t) + p2(t)] + eK(#  - A)p(t) (11.42) 

and define a constant K2 > 1 independent of t, such that 

/~ u2dx <_ K2/~ IVul2dx (11.43) 

for all u C H~ 0 (f l). 

Inequality (11.43) is due to Poincare and inequalities (11.26), (11.27), (11.28) follow 

from combination of Poincare inequality and Trace inequality (cf. Aubin [1]). 

Now we have from (11.23), 

Ip0(t)l <- Pm /~ (u,2 + c21Vu[2)dz ~_ 2R0Z(t)  
c C 

(11.44) 

and 
<_ n 2--~- 1 Jn f (  n -  1 Ipl(t)l u '2 + c2u2)dx < - -  

C 

by the use of (11.43). Also there exists a constant K3 > 0, 

K2E(t) (11.45) 

such that we can write 

0 <_ p2(t) <_ K3E(t). (11.46) 

With the help of (11.44)-(1t.46), it follows from (11.42.) that 

[ o l  )] [ o l  
1 -  c § K2 Z(t) <_ G(t) <_ l + e + g2 + g3 

C C 

+ e K ( # -  A)p(t). (11.47) 

Since e > 0 is small, taking e < (2R0/c+  K2(n 1)1c + K3) -1 - we have from (11.47), 

eKaE(t) < G(t) < K4E(t) + cK(l~-  A)p(t) (11.48) 

where 

K4 = 1 + e + K2 + K3 �9 
c 

Now 0 < E(t) < E(0) and 0 < p(t) <_ p(O) in virtue of (11.18) and Lemma 11.2. 

Therefore there exists a constant K5 > 0 such that 

p(t) ~ KsE(t). (11.49) 
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Thus we have from (11.48), 

where, 

We can assert that 

Invoking Poincare inequality 

for all y' E H~-o(12 ), where 

eK3E(t) <_ C(t) < K6E(t) (11.50) 

K6 = K4 + e(~ - A)KKh. 

g~ < oo, provided that sup{p(t)/E(Q} 

(11.51) 

is finite for t > O. 

In IVy'l:dx <_ K* fn [AY'l=dx (11.52) 

K* is a positive number (which can be taken as large as 

we please), we have from (11.17) and (11.21), 

Here, the integrals within the brackets arise from small viscous boundary damping along 

F1 only, and can be suppressed by taking K* large enough to write 

E'(t) > g**p'(t) (11.53) 

where K** > K*. Since E'(t) and p'(t) are both negative, we conclude that p(t) 

decreases at a much faster rate than E(t) and the assertion follows. 

Now we proceed with the differentiation of (11.42) with respect to t, to obtain 
e 

C'(t) : E'(t) + e[p~o(i) + pi(t) + p~(t)] + eg(# - A ) p ' ( t ) .  (11.54) 

Using the relations (11.17), (11.21) and Lemma 11.3, we obtain from (11.54) 

-2eE( t )  + c2(# - A)(ego - 1) fo [Vy'212dz + C2C2( n G'(t) <_ 1)2(~U + A)K1 

We note that, 

12 f,[VY'.(m.V)Vu]d~l fn [l[Vy'12 + 2e[(m.V)vulU]dz 
1 

IVul~dx 

(11.55) 

by the use of (11.35), and K7 is a positive constant independent of t, defined by 

fn [(m'V)Vul2dx <- K7 ]n IAu['dx" (11.57) 

(11.56) 
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The inequality (11.57) is due to the fact that the expressions mk(O2u/azkaxj) 
(j,k = 1,2,...,n) in the integrand of left hand side of (11.57) can be transformed to 

the form Mk(O2u/Oz~) (with usual summation convention of repeated indices) by 

suitable orthogonal transformation of the axes zi and Au is invarient with respect 

to orthogonal transformation (cf. [20]). 

Taking ~ < bc2/2Ro also and using (11.56), we have from (11.55) 

f__ Kl s ,Vu,2dx G'(t) < -2eE(t)  + c2(# - A)(eg0 - /n IVy'I2dx + e=c'(n - 

+2e2c2(# - A)K7 In [Au[2dx 

Use of the relations (11.16) and (11.20), the above can be written as 

G'(t) < e2(n ,,2/* + _ - ,j  - - ~ g l E ( t )  + 4e2(/* - )~)gTp(t)- 2eE(t), (11.58) 

where we take e _< 1/2K0. By the relation (11.49), we have from (11.58) 

G ' ( t ) < ~ [ e ( ( n - I ) 2 ( # + A ) K I + 4 ( / * - A ) K s K ~ ) - I ] E ( t ) - ~ E ( t ) . _  )~ (11.59) 

[( ]1 
As e issmall, we can further suppose that e <  n-1)2(/*+)~)K1/A+4(#-)~)KsKr , 
and it then follows from (11.59) that 

G'(t) + eE(t) <0. (11.60) 

With the help of (11.50), the realtion (11.60) leads the differential inequality 

O'(t) + ~O(t) <_ O, (11.61) 

where /3 = e/K6. The constant K6 is given by (11.51) and the fixed positive number 

e is the smallest of (7)~/2bP~)(/*+)~) -1, (2Ro/c+(n-1)K2/c+Ka) -1, bc2/2Ro, 1/2Ko 

and ( (n-1)2( / ,  + A)K1/A + 4(/ , -A)KsKr)  -1 Integrating (11.61)from zero to t, we 

obtain the result 

G(t) <_ e-~G(O) for * > 0. (11.62) 

Again by the use of (11.50), it follows finally from (11.62) that 

E(t) <_ Me-~tE(O) for t > 0, (11.63) 

where M = Ks/eK3. This completes the proof. 
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11.5 Concluding Remarks  

The result (11.63) gives explicitly the exponential energy decay rate for the solution 

of the system (11.5)-(11.8). Since the formulation of the problem (11.5) is more general 

than that  of wave equation, the result (11.63) can be realised for a flexible elastic system 

with internal damping satisfying the model equation (11.5), such as in the vibrations 

of beams and plates. For example (cf. Rayleigh [76]), in the longitudinal vibrations of 

a beam of length t,  the strain e in equation (11.9)equals Oy/Oz, where y is the 

displacement along the beam, and the equation of motion is 

GQo- 
p y "  = . ( 1 1 . 6 4 )  

0x 

With the strain-stress relation (11.9), (11.64) leads to equation (11.5) in one dimen- 

sion, where c 2 = E/p ,  where p is density and E the Young's modulas of the 

beam, If the end z = 0 is clamped, y ( O , t ) =  0 and if the end x = s is free, 

(Oy/Ox)(s = O. So if a damping force proportional to y' is operating on this end, 

then we have (Oy/Oz)(l,  t) = -by'(s t), b > 0. The same set of equations holds for 

torsional vibrations of the beam. Similar is the case for large rectangular panels or 

strips. In multi-dimensions, we may think of shear wave propogation in infinite or lay- 

ered semi-infinite solids (cf. Ewing et al. [21]). The analysis presented here estimates 

decay rate of energy for the solution of such problems in a general manner. 
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C O N C L U S I O N S  

In this Thesis, we have made a presentation to study, at an advanced level of rigor, a 

unified treatment of current methodologies for design and analysis of controllability and 

stability of vibrating elastic structures. Mathematical control theory for distributed 

parameter system is currently under extensive development in view of application to 

vibration control of structural elements. Major goals of this Thesis have been the in- 

vestigation and presentation of techniques for analyzing the exact controllability and 

uniform stabilization of torsional and tiexural vibrations of flexible hybrid structures. 

The hybrid models which are totally free at one end and appropriate control force or 

torque is applicable at the other end is the focal point for the suppressing the vibrations 

of the overall system following prescribed initial data, with out applying any constraint 

at the free end. The investigation has put forward estimated least time for exact con- 

trollability in the framework of HUM, due to Lions [52]. For studying more realistic 

linearized models of vibration, internal damping of the material is taken into account 

in the Thesis. In this context, we point out that uniform stability for und~ped wave 

equation is impossible unless there is a boundary feedback (viscous boundary damping) 

on some part of the boundary. In the Thesis we have examined the nature of uniform 

stabilization of an internally damped wave equation in a bounded domain fl in R n 

without boundary feedback, owing to the fact that,  inherent small material damping 

of Kelvin-Voigt model of viscoelasticity (cf. Christensen [16]) is always present in real 

materials. 

Controllability and stabilization of vibrating elastic structures is an active area of 

reasearch and there is a great deal more to be done. In this Thesis, we have focussed 

on two types of vibrations namely, torsional and flexural vibrations governed by wave 

equation and Euler-Bernoulli beam equation respectively. There are other theories of 

vibrations of elastic beams and plates such as, Timoshenko beam, Rayleigh beam and 

coupled torsional and flexural vibrations. Applications from the diverse point of view, 

techniques and associated similar analyses are needed to be explored for the vibrations 

of linked beams or multimember frames with controls at the joints, beams with lumped 
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mass at end, plates of various shapes., thin cylindrical shells, loaded shells or plates 

and highly flexible systems. The approach need not be restricted to vibrating elastic 

systems but extended to other multidimensional dynamical systems. While we dealt 

with approximated numercal result in one case, our method can be transcribed to the 

other cases without much difficulty. The problem faced in the tolerance of the results 

could be removed by employing finite element method and leaves scope for further work. 

From the mathematical point of view, the linearized model equations of different 

types of vibrations can be modified to more realistic linear models like the standard 

linear model of viscoelasticity. The faster uniform energy decay rates can be looked 

into under this concept with boundary feedback control or undamped boundary. The 

interesting fact that there are types of mechanical damping having non-linear character- 

istics in nature, the extension to non-linear boundary damping or stabilizer is a crucial 

consequence for groundwork of future studies in vibrating control system. Vibrating 

structural elements with accurate mathematical models are subject to investigation in 

respect of boundary control of vibrations of such elements. 

It should however be mentioned that there are many types of flexible space struc- 

tures, the dynamics of which are complicated and non-linear in practice. The precise 

form mathematical models never describe the physical phenomena exactly. Linearized 

models are fabricated by analysists purely for simplicity and design, and describe the 

process only approximately. Due to complexity of dynamical systems and need for con- 

trol with high-quality performance, it is necessary to develop a better understanding of 

the fundamental limitations and capabaiities of control system design. These types of 

non-linear systems require sophisticated control strategies to achieve acceptable perfor- 

mance within the uncertain environment in which they operate. Typically, the various 

parameters of the systems are not known precisely a priori ; however crude estimates are 

available in the literature. Due to lack of accurate model of dynamics and exact mea- 

surements of parameters required in the theory, the question of robustness (cf. Dahleh 

and Diaz-Bobillo [18]) of exact theory may be addressed to theoretically. 

More research will be needed to develop systematic procedures for designing various 

vibrating control systems which help to achieve a target performance in the presence of 

uncertainty. However in more complicated systems, analytical solution is rarely possible 

and it is necessary to resort to numerical techniques. The idea of robustness is essential 

for successful applications to exact dynamical systems as they are very different from 

linear systems having only uncertain parameters. A major problem remains to qualify 

robustness for these class of system. 
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Although there are greater scopes for treating extensively non-linear dynamical 

systems, the systematic investigation on the linearized models are not less elegant. 

Theoretical understanding endures to put forward the ways of generalization of the 

linearized system and the importance of the research in linear models will never be 

impeded. A mathematician always demands mathematical validity for a procedure that 

would always mathematically work. We feel consequently that in the years to come, 

there will be a confluence of theories and techniques for better understanding of the 

variety of dynamical systems, we have described in this Thesis. 
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